首页> 外文期刊>Mathematical notes >Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev-Hermite Weight and Widths of Function Classes
【24h】

Mean Approximation of Functions on the Real Axis by Algebraic Polynomials with Chebyshev-Hermite Weight and Widths of Function Classes

机译:具有Chebyshev-Hermite权重和函数类宽度的代数多项式在实轴上的函数均值逼近

获取原文
获取原文并翻译 | 示例

摘要

We obtain sharp Jackson-Stechkin type inequalities on the sets L_(2,ρ)~r(R) in which the values of best polynomial approximations are estimated from above via both the moduli of continuity of mth order and K-functionals of rth derivatives. For function classes defined by these characteristics, the exact values of various widths are calculated in the space L_(2,ρ)(R). Also, for the classes W_(2,ρ)~r(K_m,Ψ), where r = 2,3,..., the exact values of the best polynomial approximations of the intermediate derivatives f~((v)), v = 1,..., r - 1, are obtained in L_(2,ρ)(R).
机译:我们在集合L_(2,ρ)〜r(R)上获得了尖锐的Jackson-Stechkin型不等式,在该集合中,通过m阶连续性模和rth导数的K泛函从上方估计了最佳多项式逼近的值。对于由这些特性定义的函数类,在空间L_(2,ρ)(R)中计算各种宽度的精确值。同样,对于W_(2,ρ)〜r(K_m,Ψ)类,其中r = 2,3,...,中间导数f〜((v))的最佳多项式近似的精确值,在L_(2,ρ)(R)中获得v = 1,...,r-1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号