首页> 外文期刊>Mathematische Annalen >Desingularizations of the moduli space of rank 2 bundles over a curve
【24h】

Desingularizations of the moduli space of rank 2 bundles over a curve

机译:曲线上秩2束的模空间的反奇化

获取原文
获取原文并翻译 | 示例

摘要

Let X be a smooth projective curve of genus g≥3 and M 0 be the moduli space of rank 2 semistable bundles over X with trivial determinant. There are three desingularizations of this singular moduli space constructed by Narasimhan-Ramanan [NR78], Seshadri [Ses77] and Kirwan [Kir86b] respectively. The relationship between them has not been understood so far. The purpose of this paper is to show that there is a morphism from Kirwan’s desingularization to Seshadri’s, which turns out to be the composition of two blow-downs. In doing so, we will show that the singularities of M 0 are terminal and the plurigenera are all trivial. As an application, we compute the Betti numbers of the cohomology of Seshadri’s desingularization in all degrees. This generalizes the result of [BS90] which computes the Betti numbers in low degrees. Another application is the computation of the stringy E-function (see [Bat98] for definition) of M 0 for any genus g≥3 which generalizes the result of [Kie03].
机译:令X为g≥3的光滑投影曲线,而M 0为X上具有琐碎行列式的2级半稳定束的模空间。该奇异模空间由Narasimhan-Ramanan [NR78],Seshadri [Ses77]和Kirwan [Kir86b]分别构造为三个奇异化。到目前为止,尚未了解它们之间的关系。本文的目的是说明从Kirwan的单数化到Seshadri的单态化是一个现象,事实证明这是两次泄密的组合。这样一来,我们将证明M 0 的奇异性是末端的,而多变体都是琐碎的。作为应用程序,我们在所有角度上计算Seshadri的单数化同调的Betti数。这概括了[BS90]的结果,该结果以低度计算贝蒂数。另一个应用是计算g≥3的任何属M 0的严格E函数(请参见[Bat98]的定义),从而推广[Kie03]的结果。

著录项

  • 来源
    《Mathematische Annalen》 |2004年第3期|491-518|共28页
  • 作者

    Young-Hoon Kiem; Jun Li;

  • 作者单位

    Department of Mathematics Seoul National University;

    Department of Mathematics Stanford University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号