首页> 外文期刊>Mathematical and Computer Modelling of Dynamical Systems >A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space
【24h】

A training set and multiple bases generation approach for parameterized model reduction based on adaptive grids in parameter space

机译:参数空间中基于自适应网格的参数化模型约简的训练集和多基生成方法

获取原文
获取原文并翻译 | 示例

摘要

Modern simulation scenarios require real-time or many-query responses from a simulation model. This is the driving force for increased efforts in model order reduction for high-dimensional dynamical systems or partial differential equations. This demand for fast simulation models is even more critical for parameterized problems. Several snapshot-based methods for basis construction exist for parameterized model order reduction, for example, proper orthogonal decomposition or reduced basis methods. They require the careful choice of samples for generation of the reduced model. In this article we address two types of grid-based adaptivity that can be beneficial in such basis generation procedures. First, we describe an approach for training set adaptivity. Second, we introduce an approach for multiple bases on adaptive parameter domain partitions. Due to the modularity, both methods also can easily be combined. They result in efficient reduction schemes with accelerated training times, improved approximation properties and control on the reduced basis size. We demonstrate the applicability of the approaches for instationary partial differential equations and parameterized dynamical systems.
机译:现代仿真方案要求仿真模型具有实时或多查询响应。这是在高维动力系统或偏微分方程的模型降阶中付出更多努力的驱动力。对于参数化问题,对快速仿真模型的这种需求甚至更为关键。存在用于参数化模型阶数减少的几种基于快照的基础构造方法,例如,适当的正交分解或简化基础方法。他们需要仔细选择样本以生成简化模型。在本文中,我们讨论了两种基于网格的适应性,它们在此类基础生成过程中可能是有益的。首先,我们描述一种训练集合适应性的方法。其次,我们介绍一种基于自适应参数域分区的多种方法。由于模块化,两种方法也可以轻松组合。它们导致有效的归约方案,其中包含加快的训练时间,改进的逼近特性以及对减小的基础尺寸的控制。我们证明了平稳偏微分方程和参数化动力学系统的方法的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号