...
首页> 外文期刊>Materials Science and Engineering >Effect of liquid nitrogen and warm deformation on the microstructure and mechanical properties of 321-type metastable austenitic steel
【24h】

Effect of liquid nitrogen and warm deformation on the microstructure and mechanical properties of 321-type metastable austenitic steel

机译:液氮对321型稳定性奥氏体钢微观结构和力学性能的影响

获取原文
获取原文并翻译 | 示例

摘要

New thermomechanical treatments combining plastic deformation with cooling in liquid nitrogen followed by warm deformation and annealing are applied to form fine-grained structure in the 321-type metastable austenitic steel. The structural-phase transformations during these treatments are studied by Transmission Electron Microscopy (TEM), Scanning Electron Microscopy with Electron Backscatter Diffraction (SEM EBSD), X-ray Diffraction (XRD) and magnetic investigations. During liquid nitrogen deformation (LND) with a true strain of e = 0.2 a band-like deformed structure with a volume fraction of α'-martensite ≈ 70% is formed. The subsequent warm deformation (WD), with e = 0.4, i.e. LND + WD treatment at 600 °C, leads to a partial reverse α'→γ transformation under plastic deformation. A fine-grained structure with high fraction of low-angle boundaries was formed by the shear reversion mechanism. The α' -martensite content decreases to ≈50%. The mechanical properties of the material in different stages of the treatments are studied under static tensile testing. It is demonstrated that these treatments give rise to an increase in the yield strength of more than 1250 MPa. Additional annealing provides a more complete (up to 85-93%) martensite-to-austenite transformation and allows maintaining a fine-grained structure. After annealing, the fraction of high-angle and twin boundaries in the austenite increases. The diffusion-type mechanism of austenite reversion is involved in the formation of microstructure features under these conditions. Annealing allows changing tensile and ductile properties (yield strength up to ≈ 830-945 MPa at elongation of ≈10-19%) through modifying the microstructure and phase composition of fine-grained steel.
机译:将塑性变形与液氮冷却相结合的新的热机械处理,然后施加温度变形和退火,以在321型亚型奥氏体钢中形成细粒结构。通过透射电子显微镜(TEM)研究了这些处理期间的结构相变,扫描电子显微镜,电子背散射衍射(SEM EBSD),X射线衍射(XRD)和磁性研究。在液氮变形(LND)期间,具有E = 0.2的真正应变的带状变形结构,形成具有α'-martensite的体积分数的甲克莱氏甲克斯≈00%。随后的温度变形(WD),具有E = 0.4,即600℃的LND + WD处理,导致塑性变形下的部分反向α'→γ变换。通过剪切逆转机制形成具有高分低分数的细粒结构。 α'末端含量降低至≈50%。在静态拉伸试验下研究了处理不同阶段的材料的机械性能。结果表明,这些治疗产生了超过1250MPa的屈服强度的增加。额外的退火提供更完整的(高达85-93%)马氏体对奥氏体转化,并允许保持细粒度的结构。退火后,奥氏体中高角度和双界的分数增加。在这些条件下,奥氏体逆转的扩散型机理涉及形成微观结构特征。退火允许改变拉伸和延展性(屈服强度高达≈10-19%的伸长率),通过改变细粒钢的微观结构和相位组成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号