首页> 外文期刊>Materials Science and Engineering >Experimental study of the superplastic deformation mechanisms of high-strength aluminum-based alloy
【24h】

Experimental study of the superplastic deformation mechanisms of high-strength aluminum-based alloy

机译:高强度铝基合金超塑性变形机理的实验研究

获取原文
获取原文并翻译 | 示例

摘要

The role of different deformation mechanisms and the contributing factors behind them needs to be clearly defined to develop materials exhibiting high strain rate superplasticity. It is still not fully understood to what extent the deformation conditions and microstructural parameters affect the mechanisms of superplastic deformation. A novel Al-3.9Zn-4.1Mg-0.8Cu-2.8Ni-0.25Zr alloy is employed to determine what effects the testing conditions, elemental and phase composition and evolution of grain and sub-grain structure make towards deformation mechanisms. To analyze the deformation behavior and microstructure evolution, uniaxial tensile tests are performed following two deformation regimes with the different constant strain rates and temperatures: (1) 2 × 10~(-3) s~(-1), 480°C and (2) 2 × 10~(-2) s~(-1), 440°C. The elongation to failure exceeds 650% and the strain rate sensitivity coefficient m is near 0.5 at both deformation regimes. Electron microscopy and focused ion beam techniques are employed to analyze mechanisms associated with grain boundary sliding and intragranular strain by using the samples in a stable flow. Surface grids indicated that superplastic flow is accompanied by the formation of striated regions on the surface, whereas grain boundary sliding involves grain neighbor switching and grain rotation. Intragranular deformation with increased dislocation density and dynamic recrystallization are also observed. Weaker intergranular and intense intragranular deformation are revealed at high strain rate deformation regime. Solute effect and the presence of two types of secondary phases, nanoprecipitates of L1_2-Al_3Zr and micron-sized eutectic Al_3Ni, are discussed in comparison to conventional AA7475 alloy in different aspects of grain growth, dynamic recrystallization and strain-rate sensitivity.
机译:需要清楚地定义不同变形机制的作用以及它们背后的贡献因素,以开发出现高应变率超塑性的材料。在多大程度上仍然没有完全理解,变形条件和微结构参数会影响超塑性变形的机制。采用新型Al-3.9Zn-4.1mg-0.8Cu-2.8Ni-0.25zr合金来确定测试条件,元素和相组成和谷物和亚粒结构的演变对变形机制的影响。为了分析变形行为和微观结构演化,在两个变形制度下进行单轴拉伸试验,其具有不同的恒定应变率和温度:(1)2×10〜(-3)S〜(-1),480°C和( 2)2×10〜(-2)S〜(-1),440°C。失败的伸长率超过650%,并且在变形制度中,应变率敏感系数M接近0.5。使用电子显微镜和聚焦离子束技术来分析通过在稳定流动中使用样品与晶界滑动和腔内应变相关的机制。表面栅格表示,超塑性流动伴随着表面上的条纹区域的形成,而晶界滑动涉及谷物邻接和晶粒旋转。还观察到具有增加的位错密度和动态重结晶的鞘内变形。在高应变速率变形方案下揭示了晶间和强烈的腔内变形。与常规AA7475合金在谷粒生长,动态重结晶和应变率灵敏度的不同方面,讨论了溶液效果和两种类型的二阶段,L1_2-AL_3ZR和微米尺寸的共晶Al_3NI的纳米尺寸诱导物。

著录项

  • 来源
    《Materials Science and Engineering》 |2020年第24期|139639.1-139639.11|共11页
  • 作者单位

    Department of Physical Metallurgy of Non-Perrous Metals National University of Science and Technology MISiS Moscow 119049 Russian Federation;

    Department of Physical Metallurgy of Non-Perrous Metals National University of Science and Technology MISiS Moscow 119049 Russian Federation;

    Department of Physical Metallurgy of Non-Perrous Metals National University of Science and Technology MISiS Moscow 119049 Russian Federation;

    Laboratory of Radiation Materials Science Institute of Nuclear Physics Almaty 050032 Kazakhstan;

    Department of Physical Metallurgy of Non-Perrous Metals National University of Science and Technology MISiS Moscow 119049 Russian Federation;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Aluminum alloy; High strain rate superplasticity; Deformation mechanisms; Grain boundary sliding; Microstructural study;

    机译:铝合金;高应变率超级塑性;变形机制;晶界滑动;微观结构研究;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号