首页> 外文期刊>Materials Science and Engineering >Bendability enhancement of an age-hardenable aluminum alloy: Part Ⅱ - multiscale numerical modeling of shear banding and fracture
【24h】

Bendability enhancement of an age-hardenable aluminum alloy: Part Ⅱ - multiscale numerical modeling of shear banding and fracture

机译:抗弯性增强年龄清除铝合金:第Ⅱ部分 - 多尺度数值模拟剪切和裂缝

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, the sequence of microstructural events leading to failure and the relationship between crystal-lographic texture, shear band development, micro-crack initiation and propagation during wrap-bending of monolithic AA6016 and composite AA6016X sheet alloys are studied using crystal plasticity based finite element methods (CPFEM). The numerically predicted results for texture evolution, shear bands development and fracture behavior after wrap bending show good agreement to the corresponding experimental observations. It is shown that failure during bending of AA6016 is controlled by the development of intense shear bands that emanate from surface low cusps along the outer tensile edge and provide a minimum energy path for microcracks to propagate, promoting a predominant transgranular failure. Upon intersection with another shear band, the advancing crack tip alternate from a less critical localization condition to a more critical one, as it requires lesser energy for the creation of new fracture surfaces while sustaining the imposed plastic deformation. Grains with Cube or near Cube texture are rather resistant to shear banding and crack propagation whereas the contrary is true for grains with near S and near Goss orientations. It is also shown that the ductile clad layers within the composite AA6016X alloy act as an efficient barrier against the development and propagation of shear bands within the less ductile inner core, thereby significantly enhancing the bendability of the alloy. Through a systematic study, it is further shown that the bendability of AA6016 alloy can be improved significantly through proper engineering of the microstructure.
机译:在本研究中,使用基于晶体可塑性的有限性研究了导致失败的微观结构事件和晶体织物纹理,剪切带显影,微裂纹发起和传播期间的晶纸织物纹理,剪切带开发,微裂纹发起和传播的关系元素方法(CPFEM)。在包裹弯曲后的纹理演化,剪切带开发和断裂行为的数值预测结果显示出对相应的实验观察的良好一致性。结果表明,AA6016的弯曲期间的故障被沿着外拉伸边缘从表面低尖顶散发出来的强烈剪切带来控制,并为微裂纹传播的最小能量路径传播,促进主要的转晶衰竭。在与另一剪切带的交叉点上时,前进的裂缝尖端从不太关键的定位条件交替到更关键的局部,因为它需要较小的能量来在维持施加的塑性变形的同时产生新的断裂表面。具有立方体或多维数据集纹理的谷物是抗剪切条纹和裂纹传播,而具有近于S和近高斯取向的谷物是正确的。还示出了复合材料AA6016x合金中的延性包覆层作为抗韧带内芯芯内剪切带的显影和传播的有效屏障,从而显着提高了合金的可弯曲性。通过系统的研究,进一步示出了通过微结构的适当工程可以显着提高AA6016合金的可弯曲性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号