首页> 外文期刊>Materials Science and Engineering >Bendability enhancement of an age-hardenable aluminum alloy: Part Ⅱ - multiscale numerical modeling of shear banding and fracture
【24h】

Bendability enhancement of an age-hardenable aluminum alloy: Part Ⅱ - multiscale numerical modeling of shear banding and fracture

机译:时效硬化铝合金的弯曲性能增强:第二部分-剪切带和断裂的多尺度数值模拟

获取原文
获取原文并翻译 | 示例
       

摘要

In this study, the sequence of microstructural events leading to failure and the relationship between crystal-lographic texture, shear band development, micro-crack initiation and propagation during wrap-bending of monolithic AA6016 and composite AA6016X sheet alloys are studied using crystal plasticity based finite element methods (CPFEM). The numerically predicted results for texture evolution, shear bands development and fracture behavior after wrap bending show good agreement to the corresponding experimental observations. It is shown that failure during bending of AA6016 is controlled by the development of intense shear bands that emanate from surface low cusps along the outer tensile edge and provide a minimum energy path for microcracks to propagate, promoting a predominant transgranular failure. Upon intersection with another shear band, the advancing crack tip alternate from a less critical localization condition to a more critical one, as it requires lesser energy for the creation of new fracture surfaces while sustaining the imposed plastic deformation. Grains with Cube or near Cube texture are rather resistant to shear banding and crack propagation whereas the contrary is true for grains with near S and near Goss orientations. It is also shown that the ductile clad layers within the composite AA6016X alloy act as an efficient barrier against the development and propagation of shear bands within the less ductile inner core, thereby significantly enhancing the bendability of the alloy. Through a systematic study, it is further shown that the bendability of AA6016 alloy can be improved significantly through proper engineering of the microstructure.
机译:在这项研究中,使用基于晶体塑性的有限元方法研究了导致失效的微观结构的顺序,以及在单片AA6016和复合AA6016X薄板合金弯曲弯曲过程中的晶体学织构,剪切带发展,微裂纹萌生和扩展之间的关系。元素方法(CPFEM)。包裹弯曲后织构演变,剪切带发展和断裂行为的数值预测结果与相应的实验观察结果吻合良好。结果表明,AA6016弯曲过程中的破坏是由强烈的剪切带的发展所控制的,该剪切带是从表面低尖点沿着外部拉伸边缘散发出来的,并为微裂纹的传播提供了最小的能量路径,从而促进了主要的跨晶破坏。在与另一条剪切带相交时,前进的裂纹尖端从次要的局部化条件转变为次要的局部化条件,因为它需要更少的能量来产生新的断裂面,同时维持所施加的塑性变形。具有立方或接近立方纹理的晶粒对剪切带和裂纹扩展具有相当的抵抗力,而具有接近S和接近高斯取向的晶粒则相反。还显示出,复合AA6016X合金中的延展性包覆层可有效抵抗延展性较小的内核中剪切带的发展和传播,从而显着提高合金的可弯曲性。通过系统的研究,进一步表明,通过对显微组织进行适当的工程设计,可以显着提高AA6016合金的可弯曲性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号