首页> 外文期刊>Materials Science and Engineering >Microstructure and mechanical properties of nano-Y_2O_3 dispersed ferritic alloys synthesized by mechanical alloying and consolidated by hydrostatic extrusion
【24h】

Microstructure and mechanical properties of nano-Y_2O_3 dispersed ferritic alloys synthesized by mechanical alloying and consolidated by hydrostatic extrusion

机译:机械合金化并通过静水挤压固结的纳米Y_2O_3分散铁素体合金的组织和力学性能

获取原文
获取原文并翻译 | 示例
           

摘要

The present study reports synthesis of 1.0 wt% nano-Y_2O_3 dispersed high strength ferritic alloys with nominal compositions of 83.0Fe-13.5Cr-2.0Al-0.5Ti (alloy A), 79.0Fe-17.5Cr-2.0Al-0.5Ti (alloy B), 75.0Fe-21.5Cr-2.0Al-0.5Ti (alloy C) and 71.0Fe-25.5Cr-2.0Al-0.5Ti (alloy D) (all in wt%) by mechanical alloying using planetary ball mill followed by consolidation of alloyed powders by hydrostatic extrusion at 1000 ℃ and 550 MPa pressure with a strain rate ~10~(-1) s~(-1). The products of mechanical alloying and extrusion have been characterized by X-ray diffraction, scanning and transmission electron microscopy, energy dispersive spectroscopy and image analysis. Mechanical properties in terms of hardness, compressive strength, yield strength and Young's modulus have been determined using nano-indenter and universal testing machine. The present ferritic alloys record significantly high levels of compressive strength (850-2226 MPa) and yield strength (525-1505 MPa), Young's modulus (240-265 GPa) and hardness (14.7-17.8 GPa) with an impressive true level of strain (5.0-22.5%). These superior mechanical properties measure about 1.5 times greater, albeit with a lower density (~7.4Mg/m~3) than that of standard oxide dispersion strengthened ferritic alloys ( < 1200 MPa). Furthermore, the extent of plastic strain before failure in the present routine surpasses all previous attempts of identical synthesis but different consolidation routes for the same set of ferritic alloys. In general strength is higher along transverse than longitudinal direction of extrusion. Thus, it is concluded that uniform dispersion of nanometric (10-20 nm) Y_2O_3 (ex-situ) or Y_2Ti_2O_7 (in-situ) in high volume fraction along boundaries and within the grains of high-Cr ferritic matrix is responsible for this unique combination of high strength and ductility in the present alloys developed by powder metallurgy route.
机译:本研究报告合成了1.0 wt%纳米Y_2O_3分散的高强度铁素体合金,其名义成分为83.0Fe-13.5Cr-2.0Al-0.5Ti(合金A),79.0Fe-17.5Cr-2.0Al-0.5Ti(合金) B),75.0Fe-21.5Cr-2.0Al-0.5Ti(合金C)和71.0Fe-25.5Cr-2.0Al-0.5Ti(合金D)(均以重量%计)通过行星式球磨机机械合金化然后固结合金粉末在1000℃和550 MPa压力下通过静水挤压法制备,应变速率为〜10〜(-1)s〜(-1)。机械合金化和挤压的产品已通过X射线衍射,扫描和透射电子显微镜,能量色散光谱和图像分析进行了表征。使用纳米压头和通用测试机确定了机械性能,包括硬度,抗压强度,屈服强度和杨氏模量。本发明的铁素体合金具有显着高水平的抗压强度(850-2226 MPa)和屈服强度(525-1505 MPa),杨氏模量(240-265 GPa)和硬度(14.7-17.8 GPa),并具有令人印象深刻的真实应变水平(5.0-22.5%)。这些优异的机械性能约为1.5倍,尽管密度(〜7.4Mg / m〜3)比标准氧化物弥散强化铁素体合金(<1200 MPa)要低。此外,在本例中,在失效之前塑性应变的程度超过了先前对于相同的一组铁素体合金合成相同但固结途径不同的所有尝试。通常,沿横向的强度高于沿挤出的纵向的强度。因此,可以得出结论:纳米(10-20 nm)Y_2O_3(原位)或Y_2Ti_2O_7(原位)沿边界和在高铬铁素体基体晶粒内以高体积分数均匀分散是这种独特的原因通过粉末冶金路线开发的本合金具有高强度和延展性的优点。

著录项

  • 来源
    《Materials Science and Engineering》 |2013年第15期|231-241|共11页
  • 作者单位

    Metallurgical and Materials Engineering Department, National Institute of Technology, Rourkela 769008, India;

    Metallurgical and Materials Engineering Department, Indian Institute of Technology, Kharagpur 721302, India;

    Institute of High Pressure Physics (Unipress), Polish Academy of Sciences, Sokolowska 29, 01-142 Warsaw, Poland;

    Institute of High Pressure Physics (Unipress), Polish Academy of Sciences, Sokolowska 29, 01-142 Warsaw, Poland;

    Metallurgical and Materials Engineering Department, Indian Institute of Technology, Kharagpur 721302, India,Indian Institute of Technology, Kanpur 208016, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mechanical alloying; Hydrostatic extrusion; Dispersion hardening; Ferritic alloy; Microstructure; Mechanical properties;

    机译:机械合金化;静液压挤出;分散硬化;铁素体合金微观结构机械性能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号