首页> 外文期刊>Machine Vision and Applications >Multiple convolutional features in Siamese networks for object tracking
【24h】

Multiple convolutional features in Siamese networks for object tracking

机译:暹罗网络中的多个卷积功能,用于对象跟踪

获取原文
获取原文并翻译 | 示例

摘要

Siamese trackers demonstrated high performance in object tracking due to their balance between accuracy and speed. Unlike classification-based CNNs, deep similarity networks are specifically designed to address the image similarity problem and thus are inherently more appropriate for the tracking task. However, Siamese trackers mainly use the last convolutional layers for similarity analysis and target search, which restricts their performance. In this paper, we argue that using a single convolutional layer as feature representation is not an optimal choice in a deep similarity framework. We present a Multiple Features-Siamese Tracker (MFST), a novel tracking algorithm exploiting several hierarchical feature maps for robust tracking. Since convolutional layers provide several abstraction levels in characterizing an object, fusing hierarchical features allows to obtain a richer and more efficient representation of the target. Moreover, we handle the target appearance variations by calibrating the deep features extracted from two different CNN models. Based on this advanced feature representation, our method achieves high tracking accuracy, while outperforming the standard Siamese tracker on object tracking benchmarks.
机译:暹罗跟踪器由于其在精度和速度之间的平衡而展示了对象跟踪的高性能。与基于分类的CNN不同,深度相似度网络专门设计用于解决图像相似性问题,因此通常更适合跟踪任务。然而,暹罗跟踪器主要使用最后一个卷积层进行相似性分析和目标搜索,这限制了它们的性能。在本文中,我们认为使用单个卷积层作为特征表示不是深度相似性框架中的最佳选择。我们呈现了一个多个功能 - 暹罗跟踪器(MFST),这是一种新颖的跟踪算法,用于实现鲁棒跟踪的几个层次结构映射。由于卷积层在表征对象时提供了几个抽象级别,因此融合分层特征允许获得更丰富和更有效的目标表示。此外,我们通过校准从两个不同的CNN模型中提取的深度特征来处理目标外观变化。基于此高级特征表示,我们的方法实现了高的跟踪精度,同时优于对象跟踪基准的标准暹罗跟踪器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号