首页> 外文期刊>Machine Vision and Applications >Mind reading with regularized multinomial logistic regression
【24h】

Mind reading with regularized multinomial logistic regression

机译:正则多项式Lo​​gistic回归的思想阅读

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we consider the problem of multinomial classification of magnetoencephalography (MEG) data. The proposed method participated in the MEG mind reading competition of ICANN’11 conference, where the goal was to train a classifier for predicting the movie the test person was shown. Our approach was the best among ten submissions, reaching accuracy of 68 % of correct classifications in this five category problem. The method is based on a regularized logistic regression model, whose efficient feature selection is critical for cases with more measurements than samples. Moreover, a special attention is paid to the estimation of the generalization error in order to avoid overfitting to the training data. Here, in addition to describing our competition entry in detail, we report selected additional experiments, which question the usefulness of complex feature extraction procedures and the basic frequency decomposition of MEG signal for this application.
机译:在本文中,我们考虑了脑磁图(MEG)数据的多项式分类问题。提议的方法参加了ICANN第11届会议的MEG头脑阅读比赛,其目的是训练分类器来预测测试人员所观看的电影。我们的方法是十个提交者中最好的,在这五个类别问题中达到正确分类的68%的准确性。该方法基于规则化Logistic回归模型,该模型的有效特征选择对于度量值大于样本的情况至关重要。此外,要特别注意泛化误差的估计,以避免过度拟合训练数据。在这里,除了详细描述我们的比赛参赛作品外,我们还报告了一些额外的实验,这些实验质疑复杂特征提取程序的有效性以及MEG信号在此应用中的基本频率分解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号