首页> 外文期刊>Machine Vision and Applications >Comparing two video-based techniques for driver fatigue detection: classification versus optical flow approach
【24h】

Comparing two video-based techniques for driver fatigue detection: classification versus optical flow approach

机译:比较两种基于视频的驾驶员疲劳检测技术:分类与光流方法

获取原文
获取原文并翻译 | 示例

摘要

Lack of concentration in a driver due to fatigue is a major cause of road accidents. This paper investigates approaches that can be used to develop a video-based system to automatically detect driver fatigue and warn the driver, in order to prevent accidents. Ocular cues such as percentage eye closure (PERCLOS) are considered strong fatigue indicators; thus, accurately locating and tracking the driver's eyes is vital. Tests were carried out based on two approaches to track the eyes and estimate PERCLOS: (1) classification approach and (2) optical flow approach. In the first approach, the eyes are tracked by finding local regions, the state (open or closed) of the eyes in each image frame is estimated using a classifier, and thereby the PERCLOS is calculated. In the second approach, the movement of the upper eyelid is tracked using a newly proposed simple eye model, which captures image velocities based on optical flow, thereby the eye closures and openings are detected, and then the eye states are estimated to calculate PERCLOS. Experiments show that both approaches can detect fatigue with reasonable accuracy, and that the classification approach is more accurate. However, the classification approach requires a large amount of suitable training data. If such data are unavailable, then the optical flow approach would be more practical. 【keyworks】 Driver fatigue; PERCLOS;Classification;Optical flow
机译:疲劳引起的驾驶员注意力不足是道路交通事故的主要原因。本文研究了可用于开发基于视频的系统以自动检测驾驶员疲劳并警告驾驶员以防止事故的方法。诸如闭眼百分率(PERCLOS)之类的眼提示被认为是强疲劳指标。因此,准确定位和跟踪驾驶员的眼睛至关重要。测试基于两种跟踪眼睛和估计PERCLOS的方法进行:(1)分类方法和(2)光流方法。在第一种方法中,通过找到局部区域来跟踪眼睛,使用分类器估计每个图像帧中眼睛的状态(睁开或闭合),从而计算PERCLOS。在第二种方法中,使用新提出的简单眼睛模型跟踪上眼睑的运动,该模型根据光流捕获图像速度,从而检测眼睛的闭合和睁开,然后估计眼睛的状态以计算PERCLOS。实验表明,两种方法都可以以合理的精度检测疲劳,并且分类方法更加准确。但是,分类方法需要大量合适的训练数据。如果没有此类数据,则光流方法将更为实用。 【主要工作】驾驶员疲劳; PERCLOS;分类;光学流

著录项

  • 来源
    《Machine Vision and Applications》 |2011年第4期|p.597-618|共22页
  • 作者单位

    Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne,Melbourne, VIC 3010, Australia;

    Department of Medical and Molecular Biosciences,University of Technology Sydney, Sydney,NSW 2007, Australia;

    Department of Medical and Molecular Biosciences,University of Technology Sydney, Sydney,NSW 2007, Australia;

    Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3050, Australia;

    Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne,Melbourne, VIC 3010, Australia;

    Signal Network Technology Pty Ltd,Lane Cove, Sydney, NSW 1595, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号