首页> 外文期刊>Machine Vision and Applications >Factored particle filtering with dependent and constrained partition dynamics for tracking deformable objects
【24h】

Factored particle filtering with dependent and constrained partition dynamics for tracking deformable objects

机译:具有相关和受限分区动力学的因式粒子滤波,用于跟踪可变形对象

获取原文
获取原文并翻译 | 示例

摘要

In particle filtering, dimensionality of the state space can be reduced by tracking control (or feature) points as independent objects, which are traditionally named as partitions. Two critical decisions have to be made in implementation of reduced state-space dimensionality. First is how to construct a dynamic (transition) model for partitions that are inherently dependent. Second critical decision is how to filter partition states such that a viable and likely object state is achieved. In this study, we present a correlation-based transition model and a proposal function that incorporate partition dependency in particle filtering in a computationally tractable manner. We test our algorithm on challenging examples of occlusion, clutter and drastic changes in relative speeds of partitions. Our successful results with as low as 10 particles per partition indicate that the proposed algorithm is both robust and efficient.
机译:在粒子滤波中,可以通过跟踪作为独立对象的控制(或特征)点来减少状态空间的维数,这些点通常称为分区。在减少状态空间维数的实现中必须做出两个关键决定。首先是如何为固有依赖的分区构造动态(过渡)模型。第二个关键决策是如何过滤分区状态,以实现可行且可能的对象状态。在这项研究中,我们提出了一个基于相关性的转换模型和一个提议函数,该提议函数以计算上易于处理的方式在粒子滤波中纳入了分区依赖性。我们在具有挑战性的例子中测试算法,这些例子包括分区的相对速度的阻塞,混乱和急剧变化。我们的成功结果(每个分区低至10个粒子)表明,该算法既健壮又高效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号