首页> 外文期刊>Machine Learning >A Sparse Sampling Algorithms for Near-Optimal Planning in Large Markov Decision Processes
【24h】

A Sparse Sampling Algorithms for Near-Optimal Planning in Large Markov Decision Processes

机译:大型马尔可夫决策过程中近最优规划的稀疏采样算法

获取原文
获取原文并翻译 | 示例

摘要

A critical issue for the application of Markov decision processes (MDPs) to realistic problems is how the complexity of planning scales with the size of the MDP. In stochastic environments with very large or infinite state spaces, traditional planning and reinforcement learning algorithms may be inapplicable, since their running time typically grows linearly with the state space size in the worst case. In this paper we present a new algorithm that, given only a generative model (a natural and common type of simulator) or an arbitrary MDP, performs on-line, near-optimal planning with a per-state running time that has no dependence on the number of states.
机译:将马尔可夫决策过程(MDP)应用到现实问题中的一个关键问题是计划的复杂性如何随MDP的规模扩展。在状态空间非常大或无限的随机环境中,传统的计划和强化学习算法可能不适用,因为在最坏的情况下,它们的运行时间通常随状态空间的大小线性增长。在本文中,我们提出了一种新算法,该算法仅给定生成模型(自然和通用类型的模拟器)或任意MDP,即可在不依赖于状态运行时间的情况下执行在线,接近最佳的计划状态数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号