首页> 外文期刊>Machine Learning >Analysis and Visualization of Gene Expression Microarray Data in Human Cancer Using Self-Organizing Maps
【24h】

Analysis and Visualization of Gene Expression Microarray Data in Human Cancer Using Self-Organizing Maps

机译:自组织图分析和可视化人类癌症中的基因表达微阵列数据。

获取原文
获取原文并翻译 | 示例

摘要

cDNA microarrays permit massively parallel gene expression analysis and have spawned a new paradigm in the study of molecular biology. One of the significant challenges in this genomic revolution is to develop sophisticated approaches to facilitate the visualization, analysis, and interpretation of the vast amounts of multi-dimensional gene expression data. We have applied self-organizing map (SOM) in order to meet these challenges. In essence, we utilize U-matrix and component planes in microarray data visualization and introduce general procedure for assessing significance for a cluster detected from U-matrix. Our case studies consist of two data sets. First, we have analyzed a data set containing 13,824 genes in 14 breast cancer cell lines. In the second case we show an example of the SOM in drug treatment of prostate cancer cells. Our results indicate that (1) SOM is capable of helping finding certain biologically meaningful clusters, (2) clustering algorithms could be used for finding a set of potential predictor genes for classification purposes, and (3) comparison and visualization of the effects of different drugs is straightforward with the SOM. In summary, the SOM provides an excellent format for visualization and analysis of gene microarray data, and is likely to facilitate extraction of biologically and medically useful information.
机译:cDNA微阵列允许大规模并行基因表达分析,并在分子生物学研究中催生了新的范例。在这场基因组革命中,重大挑战之一是开发复杂的方法,以促进可视化,分析和解释大量多维基因表达数据。为了应对这些挑战,我们已经应用了自组织地图(SOM)。本质上,我们在微阵列数据可视化中利用U矩阵和分量平面,并介绍了评估从U矩阵检测到的簇的重要性的通用程序。我们的案例研究包括两个数据集。首先,我们分析了14个乳腺癌细胞系中包含13,824个基因的数据集。在第二种情况下,我们显示了SOM在前列腺癌细胞药物治疗中的一个例子。我们的结果表明(1)SOM能够帮助找到某些生物学上有意义的簇;(2)聚类算法可用于为分类目的找到一组潜在的预测基因;(3)比较和可视化不同结果的影响使用SOM可以轻松获得药物。总而言之,SOM为基因芯片数据的可视化和分析提供了一种极好的格式,并且可能有助于提取生物学和医学上有用的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号