首页> 外文期刊>Machine Learning >Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data
【24h】

Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data

机译:共识聚类:一种基于重采样的方法,用于基因表达微阵列数据的分类发现和可视化

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a new methodology of class discovery and clustering validation tailored to the task of analyzing gene expression data. The method can best be thought of as an analysis approach, to guide and assist in the use of any of a wide range of available clustering algorithms. We call the new methodology consensus clustering, and in conjunction with resampling techniques, it provides for a method to represent the consensus across multiple runs of a clustering algorithm and to assess the stability of the discovered clusters. The method can also be used to represent the consensus over multiple runs of a clustering algorithm with random restart (such as K-means, model-based Bayesian clustering, SOM, etc.), so as to account for its sensitivity to the initial conditions. Finally, it provides for a visualization tool to inspect cluster number, membership, and boundaries. We present the results of our experiments on both simulated data and real gene expression data aimed at evaluating the effectiveness of the methodology in discovering biologically meaningful clusters.
机译:在本文中,我们提出了一种新的分类发现和聚类验证方法,专门用于分析基因表达数据的任务。最好将该方法视为一种分析方法,以指导和协助使用各种可用的聚类算法中的任何一种。我们称这种新方法为共识聚类,并与重采样技术结合使用,它提供了一种方法,可以代表聚类算法多次运行的共识,并评估发现的聚类的稳定性。该方法还可用于表示随机重新启动的聚类算法(例如K均值,基于模型的贝叶斯聚类,SOM等)在多次运行中的共识,以说明其对初始条件的敏感性。最后,它提供了一个可视化工具来检查集群的数量,成员资格和边界。我们目前在模拟数据和真实基因表达数据上的实验结果均旨在评估该方法在发现具有生物学意义的簇中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号