首页> 外文期刊>Machine Learning >An Empirical Study of Two Approaches to Sequence Learning for Anomaly Detection
【24h】

An Empirical Study of Two Approaches to Sequence Learning for Anomaly Detection

机译:两种用于异常检测的序列学习方法的实证研究

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces the computer security domain of anomaly detection and formulates it as a machine learning task on temporal sequence data. In this domain, the goal is to develop a model or profile of the normal working state of a system user and to detect anomalous conditions as long-term deviations from the expected behavior patterns. We introduce two approaches to this problem: one employing instance-based learning (IBL) and the other using hidden Markov models (HMMs). Though not suitable for a comprehensive security solution, both approaches achieve anomaly identification performance sufficient for a low-level "focus of attention" detector in a multitier security system. Further, we evaluate model scaling techniques for the two approaches: two clustering techniques for the IBL approach and variation of the number of hidden states for the HMM approach. We find that over both model classes and a wide range of model scales, there is no significant difference in performance at recognizing the profiled user. We take this invariance as evidence that, in this security domain, limited memory models (e.g., fixed-length instances or low-order Markov models) can learn only part of the user identity information in which we're interested and that substantially different models will be necessary if dramatic improvements in user-based anomaly detection are to be achieved.
机译:本文介绍了异常检测的计算机安全领域,并将其表达为对时间序列数据的机器学习任务。在此领域中,目标是开发系统用户正常工作状态的模型或配置文件,并检测异常状况作为与预期行为模式的长期偏差。我们介绍了两种解决此问题的方法:一种采用基于实例的学习(IBL),另一种采用隐马尔可夫模型(HMM)。尽管不适合用于全面的安全解决方案,但这两种方法都可以实现足以用于多层安全系统中的低级别“关注焦点”检测器的异常识别性能。此外,我们评估了两种方法的模型缩放技术:针对IBL方法的两种聚类技术和针对HMM方法的隐藏状态数的变化。我们发现,在两个模型类和广泛的模型比例上,在识别配置文件用户方面,性能没有显着差异。我们以此不变性为依据,证明在此安全域中,有限的内存模型(例如,固定长度的实例或低阶马尔可夫模型)只能学习我们感兴趣的部分用户身份信息,并且存在实质上不同的模型如果要实现基于用户的异常检测的显着改善,将很有必要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号