首页> 外文期刊>Machine Learning >A self-training approach to cost sensitive uncertainty sampling
【24h】

A self-training approach to cost sensitive uncertainty sampling

机译:一种对成本敏感的不确定性抽样的自训练方法

获取原文
获取原文并翻译 | 示例

摘要

Uncertainty sampling is an effective method for performing active learning that is computationally efficient compared to other active learning methods such as loss-reduction methods. However, unlike loss-reduction methods, uncertainty sampling cannot minimize total misclassification costs when errors incur different costs. This paper introduces a method for performing cost-sensitive uncertainty sampling that makes use of self-training. We show that, even when misclassification costs are equal, this self-training approach results in faster reduction of loss as a function of number of points labeled and more reliable posterior probability estimates as compared to standard uncertainty sampling. We also show why other more naive methods of modifying uncertainty sampling to minimize total misclassification costs will not always work well.
机译:不确定性采样是一种执行主动学习的有效方法,与其他主动学习方法(例如减少损失的方法)相比,计算效率更高。但是,与减少损失的方法不同,不确定性采样无法在误差产生不同成本时使总分类错误成本最小化。本文介绍了一种利用自我训练进行成本敏感的不确定性抽样的方法。我们证明,即使误分类成本相等,与标准不确定性抽样相比,这种自训练方法也可以根据标记的点数更快地减少损失,并提供更可靠的后验概率估计。我们还说明了为什么其他更幼稚的方法来修改不确定性抽样以最大程度地减少总的错误分类成本,将不会总是效果很好。

著录项

  • 来源
    《Machine Learning》 |2009年第3期|257-270|共14页
  • 作者单位

    Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA;

    Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA;

    Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    active learning; cost-sensitive learning; self-training;

    机译:主动学习;成本敏感型学习;自我训练;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号