首页> 外文期刊>Machine Learning >Constraint-based probabilistic modeling for statistical abduction
【24h】

Constraint-based probabilistic modeling for statistical abduction

机译:基于约束的概率统计诱拐建模

获取原文
获取原文并翻译 | 示例

摘要

We introduce a new framework for logic-based probabilistic modeling called constraint-based probabilistic modeling which defines CBPMs (constraint-based probabilistic models), i.e. conditional joint distributions P(-1 KB) over independent propositional variables constrained by a knowledge base KB consisting of clauses. We first prove that generative models such as PCFGs and discriminative models such as CRFs have equivalent CBPMs as long as they are discrete. We then prove that CBPMs in infinite domains exist which give existentially closed logical consequences of KB probability one. Finally we derive an EM algorithm for the parameter learning of CBPMs and apply it to statistical abduction.
机译:我们为基于逻辑的概率模型引入了一种新框架,称为基于约束的概率模型,该框架定义了CBPM(基于约束的概率模型),即独立命题变量上的条件联合分布P(-1 KB),受知识库KB约束,条款。我们首先证明,生成模型(例如PCFG)和判别模型(例如CRF)具有等效的CBPM,只要它们是离散的即可。然后,我们证明了存在于无限域中的CBPM,这些CBPM给出了KB概率存在性上存在的封闭逻辑结果。最后,我们导出了一种用于CBPM参数学习的EM算法,并将其应用于统计绑架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号