首页> 外文期刊>Machine Learning >Detecting communities and their evolutions in dynamic social networks—a Bayesian approach
【24h】

Detecting communities and their evolutions in dynamic social networks—a Bayesian approach

机译:检测社区及其在动态社交网络中的演变-贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

Although a large body of work is devoted to finding communities in static social networks, only a few studies examined the dynamics of communities in evolving social networks. In this paper, we propose a dynamic stochastic block model for finding communities and their evolution in a dynamic social network. The proposed model captures the evolution of communities by explicitly modeling the transition of community memberships for individual nodes in the network. Unlike many existing approaches for modeling social networks that estimate parameters by their most likely values (i.e., point estimation), in this study, we employ a Bayesian treatment for parameter estimation that computes the posterior distributions for all the unknown parameters. This Bayesian treatment allows us to capture the uncertainty in parameter values and therefore is more robust to data noise than point estimation. In addition, an efficient algorithm is developed for Bayesian inference to handle large sparse social networks. Extensive experimental studies based on both synthetic data and real-life data demonstrate that our model achieves higher accuracy and reveals more insights in the data than several state-of-the-art algorithms.
机译:尽管大量工作致力于在静态社交网络中寻找社区,但只有少数研究研究了社区在不断发展的社交网络中的动态。在本文中,我们提出了一种动态随机块模型,用于在动态社交网络中查找社区及其演化。所提出的模型通过为网络中各个节点的社区成员资格的转移进行显式建模,从而捕获了社区的发展。与许多现有的社交网络建模方法不同,在本研究中,我们采用贝叶斯方法进行参数估计,以计算所有未知参数的后验分布。社交网络通过参数的最可能值(即点估计)来估计参数。贝叶斯处理使我们能够捕获参数值的不确定性,因此对数据噪声的可靠性比对点估计的可靠性更高。另外,针对贝叶斯推理开发了一种有效的算法来处理大型稀疏社交网络。基于合成数据和现实数据的大量实验研究表明,与几种最新算法相比,我们的模型具有更高的准确性,并且在数据中显示出更多的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号