首页> 外文期刊>Expert systems with applications >Evolution of communities in dynamic social networks: An efficient map-based approach
【24h】

Evolution of communities in dynamic social networks: An efficient map-based approach

机译:动态社交网络中社区的演变:基于地图的有效地图

获取原文
获取原文并翻译 | 示例

摘要

The expanded domain of expert system applications has risen the impact of modeling and analysis of community evolution in social networks as an important part of the decision-making process. Social networks are time-variant systems, evolving through entities joining or leaving networks and establishing or terminating relationships. In this article, we study evolution of social networks at the level of community structure, by tracking different transformations of communities over time. Upon experimentation, we observed that a considerable portion of community evolution is partial events such as partial merge. Therefore, we define a broader set of community evolution to include partial events. Furthermore, we introduce ICEM, a novel method for Identification of Community Evolution by Mapping. ICEM determines community evolution by tracking community members, implemented with a hash-map. ICEM maps each member to a (t, c) pair, specifying it is last observed in time window t and community c. We evaluated our proposed approach with seventeen publicly available social network datasets and compared its performance against other well-known methods in the literature. Our experimental results indicated the performance superiority of our proposed solution. Additionally, we conducted separate comprehensive experiments using three community detection algorithms to highlight the effect of choosing different community discovery methods on community evolution results. (C) 2020 Elsevier Ltd. All rights reserved.
机译:Expert Experty System应用程序的扩展领域已经提高了社区进化建模和分析的影响,作为决策过程的重要组成部分。社交网络是时变量系统,通过加入或离开网络的实体而发展或建立或终止关系。在本文中,我们通过跟踪各个社区的不同转变,研究社区结构水平的社交网络的演变。在实验后,我们观察到,相当大的社区演变是部分事件,例如部分合并。因此,我们定义了更广泛的社区进化,以包括部分事件。此外,我们通过映射引入ICEM,一种新的识别社区演变的方法。 ICEM通过散列地图跟踪社区成员来确定社区进化。 ICEM将每个成员映射到(t,c)对,指定在时间窗口t和社区c中最后观察到。我们评估了我们提出的拟议方法,具有十七个公开可用的社交网络数据集,并将其与文献中其他知名方法的表现进行了比较。我们的实验结果表明我们提出的解决方案的性能优势。此外,我们使用三个社区检测算法进行了单独的综合实验,突出了在社区演化结果中选择不同的社区发现方法的效果。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号