首页> 外文期刊>Machine Learning >Statistical topic models for multi-label document classification
【24h】

Statistical topic models for multi-label document classification

机译:用于多标签文档分类的统计主题模型

获取原文

摘要

Machine learning approaches to multi-label document classification have to date largely relied on discriminative modeling techniques such as support vector machines. A drawback of these approaches is that performance rapidly drops off as the total number of labels and the number of labels per document increase. This problem is amplified when the label frequencies exhibit the type of highly skewed distributions that are often observed in real-world datasets. In this paper we investigate a class of generative statistical topic models for multi-label documents that associate individual word tokens with different labels. We investigate the advantages of this approach relative to discriminative models, particularly with respect to classification problems involving large numbers of relatively rare labels. We compare the performance of generative and discriminative approaches on document labeling tasks ranging from datasets with several thousand labels to datasets with tens of labels. The experimental results indicate that probabilistic generative models can achieve competitive multi-label classification performance compared to discriminative methods, and have advantages for datasets with many labels and skewed label frequencies.
机译:迄今为止,用于多标签文档分类的机器学习方法很大程度上依赖于区分建模技术,例如支持向量机。这些方法的缺点是,随着标签总数和每个文档标签数量的增加,性能会迅速下降。当标签频率表现出在实际数据集中经常观察到的高度偏斜分布的类型时,这个问题就更加严重了。在本文中,我们研究了一类针对多标签文档的生成统计主题模型,这些模型将单个单词标记与不同标签相关联。我们研究了这种方法相对于判别模型的优势,尤其是在涉及大量相对稀有标签的分类问题上。我们比较了生成和区分方法在文档标注任务上的性能,这些标注任务范围从具有数千个标签的数据集到具有数十个标签的数据集。实验结果表明,与判别方法相比,概率生成模型可以实现具有竞争力的多标签分类性能,并且对于具有许多标签和偏斜标签频率的数据集具有优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号