首页> 外文期刊>Machine Learning >Subsumption resolution: an efficient and effective technique for semi-naive Bayesian learning
【24h】

Subsumption resolution: an efficient and effective technique for semi-naive Bayesian learning

机译:包容解决:半天真贝叶斯学习的有效技术

获取原文
获取原文并翻译 | 示例

摘要

Semi-naive Bayesian techniques seek to improve the accuracy of naive Bayes (NB) by relaxing the attribute independence assumption. We present a new type of semi-naive Bayesian operation, Subsumption Resolution (SR), which efficiently identifies occurrences of the specialization-generalization relationship and eliminates generalizations at classification time. We extend SR to Near-Subsumption Resolution (NSR) to delete near-generalizations in addition to generalizations. We develop two versions of SR: one that performs SR during training, called eager SR (ESR), and another that performs SR during testing, called lazy SR (LSR). We investigate the effect of ESR, LSR, NSR and conventional attribute elimination (BSE) on NB and Averaged One-Dependence Estimators (AODE), a powerful alternative to NB. BSE imposes very high training time overheads on NB and AODE accompanied by varying decreases in classification time overheads. ESR, LSR and NSR impose high training time and test time overheads on NB. However, LSR imposes no extra training time overheads and only modest test time overheads on AODE, while ESR and NSR impose modest training and test time overheads on AODE. Our extensive experimental comparison on sixty UCI data sets shows that applying BSE, LSR or NSR to NB significantly improves both zero-one loss and RMSE, while applying BSE, ESR or NSR to AODE significantly improves zero-one loss and RMSE and applying LSR to AODE significantly improves zero-one loss. The Friedman test and Nemenyi test show that AODE with ESR or NSR have a significant zero-one loss and RMSE advantage over Logistic Regression and a zero-one loss advantage over Weka's LibSVM implementation with a grid parameter search on categorical data. AODE with LSR has a zero-one loss advantage over Logistic Regression and comparable zero-one loss with LibSVM. Finally, we examine the circumstances under which the elimination of near-generalizations proves beneficial.
机译:半朴素贝叶斯技术试图通过放宽属性独立性假设来提高朴素贝叶斯(NB)的准确性。我们提出了一种新的半朴素贝叶斯运算类型,即归类分解(SR),它可以有效地识别专业化-泛化关系的出现,并消除分类时的泛化。我们将SR扩展到Near-Subsumption Resolution(NSR),以删除概化和概化。我们开发了两种版本的SR:一种在训练过程中执行SR,称为“渴望SR(ESR)”,另一种在测试过程中执行SR,称为“懒惰SR”(LSR)。我们调查了ESR,LSR,NSR和常规属性消除(BSE)对NB和NB的有力替代者-平均单项估计量(AODE)的影响。 BSE对NB和AODE施加了非常高的训练时间开销,同时分类时间开销的减少程度有所不同。 ESR,LSR和NSR在NB上增加了训练时间和测试时间开销。但是,LSR不会在AODE上施加额外的训练时间开销,而只会施加适度的测试时间开销,而ESR和NSR会在AODE上施加适度的训练时间和测试时间开销。我们对60个UCI数据集进行的广泛实验比较表明,将NB,BSR,LSR或NSR应用于NB可显着改善零一损失和RMSE,而将AODE的BSE,ESR或NSR应用于AODE可显着改善零一损失和RMSE,并将LSR应用于AODE大大改善了零一损失。 Friedman检验和Nemenyi检验表明,具有ESR或NSR的AODE与Logistic回归相比,具有显着的零一损失和RMSE优势,与对分类数据进行网格参数搜索的Weka的LibSVM实现相比,具有零一损失优势。具有LSR的AODE与Logistic回归相比具有零一损失的优势,与LibSVM相比具有零可比的零一损失。最后,我们研究了消除近似概化证明是有益的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号