首页> 外文期刊>Machine Learning >Efficient distance metric learning by adaptive sampling and mini-batch stochastic gradient descent (SGD)
【24h】

Efficient distance metric learning by adaptive sampling and mini-batch stochastic gradient descent (SGD)

机译:通过自适应采样和小批量随机梯度下降(SGD)进行有效的距离度量学习

获取原文
获取原文并翻译 | 示例

摘要

Distance metric learning (DML) is an important task that has found applications in many domains. The high computational cost of DML arises from the large number of variables to be determined and the constraint that a distance metric has to be a positive semi-definite (PSD) matrix. Although stochastic gradient descent (SGD) has been successfully applied to improve the efficiency of DML, it can still be computationally expensive in order to ensure that the solution is a PSD matrix. It has to, at every iteration, project the updated distance metric onto the PSD cone, an expensive operation. We address this challenge by developing two strategies within SGD, i.e. mini-batch and adaptive sampling, to effectively reduce the number of updates (i.e. projections onto the PSD cone) in SGD. We also develop hybrid approaches that combine the strength of adaptive sampling with that of mini-batch online learning techniques to further improve the computational efficiency of SGD for DML. We prove the theoretical guarantees for both adaptive sampling and mini-batch based approaches for DML. We also conduct an extensive empirical study to verify the effectiveness of the proposed algorithms for DML.
机译:距离度量学习(DML)是一项重要任务,已在许多领域得到了应用。 DML的高计算成本来自要确定的大量变量以及距离度量必须为正半定(PSD)矩阵的约束。尽管随机梯度下降(SGD)已成功应用于提高DML的效率,但为了确保解决方案是PSD矩阵,其计算量仍然很大。它必须在每次迭代时将更新的距离度量投影到PSD锥上,这是一项昂贵的操作。我们通过在SGD中开发两种策略来应对这一挑战,即小批量和自适应采样,以有效减少SGD中的更新次数(即到PSD圆锥体的投影)。我们还开发了混合方法,将自适应采样的强度与小批量在线学习技术的强度相结合,以进一步提高DML的SGD的计算效率。我们证明了DML的自适应采样和基于小批量方法的理论保证。我们还进行了广泛的实证研究,以验证所提出的DML算法的有效性。

著录项

  • 来源
    《Machine Learning》 |2015年第3期|353-372|共20页
  • 作者单位

    Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA.;

    Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA.;

    Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA.;

    Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA.;

    NEC Labs Amer, Cupertino, CA 95014 USA.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号