首页> 外文期刊>Machine Learning >Learning from evolving video streams in a multi-camera scenario
【24h】

Learning from evolving video streams in a multi-camera scenario

机译:从多摄像机场景中不断发展的视频流中学习

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, video surveillance systems are taking the first steps toward automation, in order to ease the burden on human resources as well as to avoid human error. As the underlying data distribution and the number of concepts change over time, the conventional learning algorithms fail to provide reliable solutions for this setting. In this paper, we formalize a learning concept suitable for multi-camera video surveillance and propose a learning methodology adapted to that new paradigm. The proposed framework resorts to the universal background model to robustly learn individual object models from small samples and to more effectively detect novel classes. The individual models are incrementally updated in an ensemble-based approach, with older models being progressively forgotten. The framework is designed to detect and label new concepts automatically. The system is also designed to exploit active learning strategies, in order to interact wisely with operator, requesting assistance in the most ambiguous to classify observations. The experimental results obtained both on real and synthetic data sets verify the usefulness of the proposed approach.
机译:如今,视频监控系统正朝着自动化迈出第一步,以减轻人力资源负担并避免人为错误。随着基础数据分布和概念数量随时间变化,常规学习算法无法为该设置提供可靠的解决方案。在本文中,我们对适合多摄像机视频监控的学习概念进行形式化,并提出了适合该新范例的学习方法。提出的框架诉诸于通用背景模型,以从小样本中稳健地学习单个对象模型,并更有效地检测新颖的类。各个模型以基于集成的方法进行增量更新,而逐渐遗忘了较旧的模型。该框架旨在自动检测和标记新概念。该系统还设计为利用主动学习策略,以便与操作员进行明智的交互,在最模糊的情况下请求帮助以对观察结果进行分类。在真实和综合数据集上获得的实验结果证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号