首页> 外文期刊>Machine Learning >Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited
【24h】

Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited

机译:高阶二进式数据记录的元解释学习:谓词发明再探

获取原文
获取原文并翻译 | 示例

摘要

Since the late 1990s predicate invention has been under-explored within inductive logic programming due to difficulties in formulating efficient search mechanisms. However, a recent paper demonstrated that both predicate invention and the learning of recursion can be efficiently implemented for regular and context-free grammars, by way of metalogical substitutions with respect to a modified Prolog meta-interpreter which acts as the learning engine. New predicate symbols are introduced as constants representing existentially quantified higher-order variables. The approach demonstrates that predicate invention can be treated as a form of higher-order logical reasoning. In this paper we generalise the approach of meta-interpretive learning (MIL) to that of learning higher-order dyadic datalog programs. We show that with an infinite signature the higher-order dyadic datalog class has universal Turing expressivity though is decidable given a finite signature. Additionally we show that Knuth-Bendix ordering of the hypothesis space together with logarithmic clause bounding allows our MIL implementation Metagol to PAC-learn minimal cardinality definitions. This result is consistent with our experiments which indicate that Metagol efficiently learns compact definitions involving predicate invention for learning robotic strategies, the East-West train challenge and NELL. Additionally higher-order concepts were learned in the NELL language learning domain. The Metagol code and datasets described in this paper have been made publicly available on a website to allow reproduction of results in this paper.
机译:自1990年代末以来,由于难以制定有效的搜索机制,因此在归纳逻辑编程中尚未充分研究谓词发明。但是,最近的一篇论文表明,通过相对于充当学习引擎的改进型Prolog元解释器进行元替代,可以对常规语法和无上下文语法有效地进行谓词发明和递归学习。引入新的谓词符号作为表示存在量化的高阶变量的常量。该方法证明谓词发明可以被视为高阶逻辑推理的一种形式。在本文中,我们将元解释学习(MIL)的方法概括为学习高阶二进式数据记录程序的方法。我们展示了具有无限签名的高阶二进式数据日志类具有通用的图灵表达能力,尽管在给定有限签名的情况下是可以决定的。此外,我们证明了假设空间的Knuth-Bendix排序与对数子句边界一起使我们的MIL实施Metagol到PAC可以学习最小基数定义。该结果与我们的实验一致,该实验表明Metagol有效地学习了涉及谓词发明的紧凑定义,以学习机器人策略,东西方火车挑战和NELL。另外,在NELL语言学习领域还学习了高阶概念。本文所述的Metagol代码和数据集已在网站上公开提供,以允许复制本文的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号