首页> 外文期刊>Machine Learning >Analysis of classifiers' robustness to adversarial perturbations
【24h】

Analysis of classifiers' robustness to adversarial perturbations

机译:分类器对对抗扰动的鲁棒性分析

获取原文
获取原文并翻译 | 示例

摘要

The goal of this paper is to analyze the intriguing instability of classifiers to adversarial perturbations (Szegedy et al., in: International conference on learning representations (ICLR), 2014). We provide a theoretical framework for analyzing the robustness of classifiers to adversarial perturbations, and show fundamental upper bounds on the robustness of classifiers. Specifically, we establish a general upper bound on the robustness of classifiers to adversarial perturbations, and then illustrate the obtained upper bound on two practical classes of classifiers, namely the linear and quadratic classifiers. In both cases, our upper bound depends on a distinguishability measure that captures the notion of difficulty of the classification task. Our results for both classes imply that in tasks involving small distinguishability, no classifier in the considered set will be robust to adversarial perturbations, even if a good accuracy is achieved. Our theoretical framework moreover suggests that the phenomenon of adversarial instability is due to the low flexibility of classifiers, compared to the difficulty of the classification task (captured mathematically by the distinguishability measure). We further show the existence of a clear distinction between the robustness of a classifier to random noise and its robustness to adversarial perturbations. Specifically, the former is shown to be larger than the latter by a factor that is proportional to (with d being the signal dimension) for linear classifiers. This result gives a theoretical explanation for the discrepancy between the two robustness properties in high dimensional problems, which was empirically observed by Szegedy et al. in the context of neural networks. We finally show experimental results on controlled and real-world data that confirm the theoretical analysis and extend its spirit to more complex classification schemes.
机译:本文的目的是分析分类器对于对抗性扰动的有趣不稳定性(Szegedy等人,在:国际学习表示会议(ICLR),2014年)。我们提供了一个理论框架来分析分类器对对抗性摄动的鲁棒性,并显示了分类器鲁棒性的基本上限。具体来说,我们建立了分类器对对抗性摄动的鲁棒性的一般上限,然后说明了在两个实用分类器(即线性分类器和二次分类器)上获得的上限。在这两种情况下,我们的上限都取决于可区别性度量,该度量捕获了分类任务的难度概念。我们对这两个类别的结果都表明,在涉及小的可区分性的任务中,即使实现了良好的准确性,在考虑的集合中没有分类器将对对抗性摄动具有鲁棒性。此外,我们的理论框架表明,与分类任务的难度(通过可分辨性度量进行数学捕获)相比,对抗性不稳定现象是由于分类器的灵活性低所致。我们进一步证明了分类器对随机噪声的鲁棒性和其对对抗扰动的鲁棒性之间存在明显的区别。具体来说,对于线性分类器,前者显示为比后者大一个因数,该因数与线性分类器成比例(d为信号维)。该结果为高维问题中两个鲁棒性之间的差异提供了理论解释,Szegedy等人通过经验观察到。在神经网络的背景下。我们最后在受控和真实数据上显示实验结果,这些结果证实了理论分析并将其精神扩展到更复杂的分类方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号