首页> 外文期刊>Machine Learning >Speeding up algorithm selection using average ranking and active testing by introducing runtime
【24h】

Speeding up algorithm selection using average ranking and active testing by introducing runtime

机译:通过引入运行时来使用平均排名和主动测试加快算法选择

获取原文
获取原文并翻译 | 示例

摘要

Algorithm selection methods can be speeded-up substantially by incorporating multi-objective measures that give preference to algorithms that are both promising and fast to evaluate. In this paper, we introduce such a measure, A3R, and incorporate it into two algorithm selection techniques: average ranking and active testing. Average ranking combines algorithm rankings observed on prior datasets to identify the best algorithms for a new dataset. The aim of the second method is to iteratively select algorithms to be tested on the new dataset, learning from each new evaluation to intelligently select the next best candidate. We show how both methods can be upgraded to incorporate a multi-objective measure A3R that combines accuracy and runtime. It is necessary to establish the correct balance between accuracy and runtime, as otherwise time will be wasted by conducting less informative tests. The correct balance can be set by an appropriate parameter setting within function A3R that trades off accuracy and runtime. Our results demonstrate that the upgraded versions of Average Ranking and Active Testing lead to much better mean interval loss values than their accuracy-based counterparts.
机译:可以通过合并多目标度量来显着加快算法选择方法的速度,这些度量优先考虑既有希望又可以快速评估的算法。在本文中,我们介绍了一种测量A3R,并将其纳入两种算法选择技术:平均排名和主动测试。平均排名结合了在先前数据集上观察到的算法排名,从而为新数据集确定最佳算法。第二种方法的目的是迭代地选择要在新数据集上测试的算法,从每个新评估中学习以智能地选择下一个最佳候选者。我们展示了如何升级这两种方法以合并结合了准确性和运行时间的多目标指标A3R。必须在准确度和运行时间之间建立正确的平衡,否则将因进行较少信息量的测试而浪费时间。可以通过功能A3R中的适当参数设置来设置正确的平衡,这需要权衡准确性和运行时间。我们的结果表明,平均排名和主动测试的升级版比基于准确性的同类产品具有更好的平均间隔损失值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号