首页> 外文期刊>Machine Learning >Gaussian processes with skewed Laplace spectral mixture kernels for long-term forecasting
【24h】

Gaussian processes with skewed Laplace spectral mixture kernels for long-term forecasting

机译:具有偏斜拉普拉斯光谱混合核的高斯过程,用于长期预测

获取原文
获取原文并翻译 | 示例

摘要

Long-term forecasting involves predicting a horizon that is far ahead of the last observation. It is a problem of high practical relevance, for instance for companies in order to decide upon expensive long-term investments. Despite the recent progress and success of Gaussian processes (GPs) based on spectral mixture kernels, long-term forecasting remains a challenging problem for these kernels because they decay exponentially at large horizons. This is mainly due to their use of a mixture of Gaussians to model spectral densities. Characteristics of the signal important for long-term forecasting can be unravelled by investigating the distribution of the Fourier coefficients of (the training part of) the signal, which is non-smooth, heavy-tailed, sparse, and skewed. The heavy tail and skewness characteristics of such distributions in the spectral domain allow to capture long-range covariance of the signal in the time domain. Motivated by these observations, we propose to model spectral densities using a skewed Laplace spectral mixture (SLSM) due to the skewness of its peaks, sparsity, non-smoothness, and heavy tail characteristics. By applying the inverse Fourier Transform to this spectral density we obtain a new GP kernel for long-term forecasting. In addition, we adapt the lottery ticket method, originally developed to prune weights of a neural network, to GPs in order to automatically select the number of kernel components. Results of extensive experiments, including a multivariate time series, show the beneficial effect of the proposed SLSM kernel for long-term extrapolation and robustness to the choice of the number of mixture components.
机译:长期预测涉及预测远远超过最后一个观察的地平线。这是一个高实际相关性的问题,例如公司,以便决定昂贵的长期投资。尽管基于光谱混合内核的高斯进程(GPS)的最近进展和成功,但长期预测仍然是这些内核的具有挑战性的问题,因为它们在大视野中逐渐衰减。这主要是由于它们使用高斯的混合物来模拟光谱密度。通过研究(训练部分)的傅立叶系数的分布,可以解开对长期预测的信号的特性,这是非光滑,重尾,稀疏和歪斜的傅立叶系数的分布。光谱域中此类分布的重型尾部和偏斜特性允许捕获时域中信号的远程协方差。通过这些观察结果,我们提出了由于其峰值,稀疏性,非光滑度和重型尾部特性的偏斜,使用偏斜拉普拉斯光谱混合物(SLSM)来模拟光谱密度。通过将逆傅里叶变换应用于这种光谱密度,我们获得了一个新的GP内核,用于长期预测。此外,我们改进了彩票票方法,最初开发的是神经网络的修剪重量,到GPS,以便自动选择内核组件的数量。广泛实验的结果,包括多变量时间序列,表明了所提出的SLSM核对长期外推和鲁棒性对混合物组分的鲁布利的有益效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号