首页> 外文期刊>Machine Learning >Feature ranking for multi-target regression
【24h】

Feature ranking for multi-target regression

机译:用于多目标回归的特征排序

获取原文
获取原文并翻译 | 示例

摘要

In this work, we address the task of feature ranking for multi-target regression (MTR). The task of MTR concerns problems with multiple continuous dependent/target variables, where the goal is to learn a model for predicting all of them simultaneously. This task is receiving an increasing attention from the research community, but performing feature ranking in the context of MTR has not been studied thus far. Here, we study two groups of feature ranking scores for MTR: scores (Symbolic, Genie3 and Random Forest score) based on ensembles (bagging, random forests, extra trees) of predictive clustering trees, and a score derived as an extension of the RReliefF method. We also propose a generic data-transformation approach to MTR feature ranking and thus have two versions of each score. For both groups of feature ranking scores, we analyze their theoretical computational complexity. For the extension of the RReliefF method, we additionally derive some theoretical properties of the scores. Next, we extensively evaluate the scores on 24 benchmark MTR datasets, in terms of the quality of the ranking and the computational complexity of producing it. The results identify the parameters that influence the quality of the rankings, reveal that both groups of methods produce relevant feature rankings, and show that the Symbolic and Genie3 score, coupled with random forest ensembles, yield the best rankings.
机译:在这项工作中,我们解决了多目标回归(MTR)的特征排名的任务。 MTR的任务涉及多个连续依赖/目标变量的问题,其中目标是学习同时预测所有这些模型。这项任务正在接受研究界的越来越长的关注,但到目前为止,在地铁的背景下执行特征排名。在这里,我们研究了MTR的两组特征排名分数:基于可预测聚类树的集合(袋装,随机森林,额外的树木)的分数(符号,Genie3和随机林分数),以及作为Rrelieff的扩展的分数方法。我们还提出了一种通用数据转换方法来实现MTR功能排名,因此有两个每个分数的版本。对于两组特征排名分数,我们分析了理论上的计算复杂性。对于RRELIEFF方法的扩展,我们还导出了分数的一些理论属性。接下来,我们在排名的质量和制造它的计算复杂性方面,我们广泛地评估了24个基准MTR数据集的分数。结果确定了影响排名质量的参数,揭示了两组方法都会产生相关的特征排名,并表明符号和Genie3得分,再加上随机森林集合,产生最佳排名。

著录项

  • 来源
    《Machine Learning》 |2020年第6期|1179-1204|共26页
  • 作者单位

    Jozef Stefan Inst Jamova 39 Ljubljana 1000 Slovenia|Jozef Stefan Int Postgrad Sch Jamova 39 Ljubljana 1000 Slovenia;

    Jozef Stefan Inst Jamova 39 Ljubljana 1000 Slovenia|Jozef Stefan Int Postgrad Sch Jamova 39 Ljubljana 1000 Slovenia;

    Jozef Stefan Inst Jamova 39 Ljubljana 1000 Slovenia|Jozef Stefan Int Postgrad Sch Jamova 39 Ljubljana 1000 Slovenia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Feature ranking; Multi target regression; Tree based methods; Relief;

    机译:特征排名;多目标回归;基于树的方法;浮雕;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号