首页> 外文期刊>Linear and Multilinear Algebra >Divisibility among power GCD matrices and among power LCM matrices on three coprime divisor chains
【24h】

Divisibility among power GCD matrices and among power LCM matrices on three coprime divisor chains

机译:三个共质数除数链上的幂GCD矩阵和幂LCM矩阵之间的可除性

获取原文
获取原文并翻译 | 示例

摘要

Let h be a positive integer and S = {x 1, … , x h } be a set of h distinct positive integers. We say that the set S is a divisor chain if x σ(1)  …  x σ(h) for a permutation σ of {1, … , h}. If the set S can be partitioned as S = S 1  S 2  S 3, where S 1, S 2 and S 3 are divisor chains and each element of S i is coprime to each element of S j for all 1 ≤ i < j ≤ 3, then we say that the set S consists of three coprime divisor chains. The matrix having the ath power (x i , x j ) a of the greatest common divisor of x i and x j as its i, j-entry is called the ath power greatest common divison (GCD) matrix on S, denoted by (S  a ). The ath power least common multiple (LCM) matrix [S  a ] can be defined similarly. In this article, let a and b be positive integers and let S consist of three coprime divisor chains with 1  S. We show that if a  b, then the ath power GCD matrix (S  a ) (resp., the ath power LCM matrix [S  a ]) divides the bth power GCD matrix (S  b ) (resp., the bth power LCM matrix [S  b ]) in the ring M h (Z) of h × h matrices over integers. We also show that the ath power GCD matrix (S  a ) divides the bth power LCM matrix [S  b ] in the ring M h (Z) if a  b. However, if a  b, then such factorizations are not true. Our results extend Hong's and Tan's theorems and also provide further evidences to the conjectures of Hong raised in 2008.
机译:令h为一个正整数,而S = {x 1 ,…,x x h }为a h个不同的正整数的集合。我们说如果x σ(1)≤x σ(h)对一个排列Ï,则集合S是除数链。 {1,ƒ,h}的ƒ。如果集S可以划分为S <= S 1 ≥S 2 ≥S 3 ,其中S 1 ,S 2 和S 3 是除数链,S i 是所有1≥i≤j≥3的S j 的每个元素的互质。集S由三个互质除数链组成。具有a幂(x i ,x j ) a 的矩阵是x i 的最大公约数的矩阵。并且x j 作为其i,j项被称为S上的ath幂最大公约数(GCD)矩阵,表示为(S âa)。可以类似地定义ath幂最小公倍数(LCM)矩阵[S âa]。在本文中,让a和b为正整数,让S包含三个具有1 S的互质除数链。我们表明,如果a≥b,则ath幂GCD矩阵(S -a )(分别是ath幂LCM矩阵[S ≥a ])除以bth次幂的GCD矩阵(S –b )(分别是bth次幂的LCM矩阵[S →b ])在h≥h矩阵的整数的环M h (Z)中。我们还显示,a次方GCD矩阵(S âa)在环M 中除以bth次方LCM矩阵[S âb]。 h (Z),如果a。但是,如果a,b,则这样的因式分解是不正确的。我们的结果扩展了洪氏和谭氏定理,并为洪氏在2008年提出的猜想提供了进一步的证据。

著录项

  • 来源
    《Linear and Multilinear Algebra》 |2011年第7期|p.773-788|共16页
  • 作者

    Jiehong Xu;

  • 作者单位

    Sichuan TOP Vocational Institute of Information Technology, Chengdu 611743, P.R. China;

    School of Mathematics and Statistics, Southwest University, Chongqing 400715, P.R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号