首页> 外文期刊>Lifetime Data Analysis >A corrected pseudo-score approach for additive hazards model with longitudinal covariates measured with error
【24h】

A corrected pseudo-score approach for additive hazards model with longitudinal covariates measured with error

机译:具有误差测量的纵向协变量的累加危害模型的校正伪评分方法

获取原文
获取原文并翻译 | 示例

摘要

In medical studies, it is often of interest to characterize the relationship between a time-to-event and covariates, not only time-independent but also time-dependent. Time-dependent covariates are generally measured intermittently and with error. Recent interests focus on the proportional hazards framework, with longitudinal data jointly modeled through a mixed effects model. However, approaches under this framework depend on the normality assumption of the error, and might encounter intractable numerical difficulties in practice. This motivates us to consider an alternative framework, that is, the additive hazards model, about which little research has been done when time-dependent covariates are measured with error. We propose a simple corrected pseudo-score approach for the regression parameters with no assumptions on the distribution of the random effects and the error beyond those for the variance structure of the latter. The estimator has an explicit form and is shown to be consistent and asymptotically normal. We illustrate the method via simulations and by application to data from an HIV clinical trial.
机译:在医学研究中,表征事件发生时间与协变量之间的关系通常令人感兴趣,这不仅与时间无关,而且与时间相关。与时间相关的协变量通常会间歇性地进行测量,并且会有误差。最近的兴趣集中在比例风险框架上,纵向数据通过混合效应模型共同建模。但是,此框架下的方法取决于错误的正态性假设,并且在实践中可能会遇到棘手的数字困难。这促使我们考虑使用替代框架,即加性危害模型,当对与时间有关的协变量进行误差测量时,关于该模型的研究很少。我们为回归参数提出了一种简单的校正伪评分方法,其中没有对随机效应的分布和误差的假设(后者的方差结构除外)。估计量具有显式形式,并且被证明是一致且渐近正态的。我们通过模拟和将其应用于HIV临床试验的数据来说明该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号