首页> 外文期刊>Lifetime Data Analysis >A semiparametric copula method for Cox models with covariate measurement error
【24h】

A semiparametric copula method for Cox models with covariate measurement error

机译:具有协变量测量误差的Cox模型的半参数copula方法

获取原文
获取原文并翻译 | 示例

摘要

We consider measurement error problem in the Cox model, where the underlying association between the true exposure and its surrogate is unknown, but can be estimated from a validation study. Under this framework, one can accommodate general distributional structures for the error-prone covariates, not restricted to a linear additive measurement error model or Gaussian measurement error. The proposed copula-based approach enables us to fit flexible measurement error models, and to be applicable with an internal or external validation study. Large sample properties are derived and finite sample properties are investigated through extensive simulation studies. The methods are applied to a study of physical activity in relation to breast cancer mortality in the Nurses' Health Study.
机译:我们考虑了Cox模型中的测量误差问题,在该模型中,真实暴露量与替代量之间的潜在关联未知,但可以通过验证研究进行估算。在这种框架下,可以容纳易于出错的协变量的一般分布结构,而不仅限于线性加性测量误差模型或高斯测量误差。所提出的基于copula的方法使我们能够拟合灵活的测量误差模型,并适用于内部或外部验证研究。通过广泛的模拟研究得出大的样品特性,并研究有限的样品特性。该方法被应用于护士健康研究中与乳腺癌死亡率相关的体育锻炼研究中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号