首页> 外文期刊>Lifetime Data Analysis >Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data
【24h】

Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data

机译:具有LTRC数据的半参数转换模型中的条件最大似然估计

获取原文
获取原文并翻译 | 示例

摘要

Left-truncated data often arise in epidemiology and individual follow-up studies due to a biased sampling plan since subjects with shorter survival times tend to be excluded from the sample. Moreover, the survival time of recruited subjects are often subject to right censoring. In this article, a general class of semiparametric transformation models that include proportional hazards model and proportional odds model as special cases is studied for the analysis of left-truncated and right-censored data. We propose a conditional likelihood approach and develop the conditional maximum likelihood estimators (cMLE) for the regression parameters and cumulative hazard function of these models. The derived score equations for regression parameter and infinite-dimensional function suggest an iterative algorithm for cMLE. The cMLE is shown to be consistent and asymptotically normal. The limiting variances for the estimators can be consistently estimated using the inverse of negative Hessian matrix. Intensive simulation studies are conducted to investigate the performance of the cMLE. An application to the Channing House data is given to illustrate the methodology.
机译:由于抽样计划有偏差,因此在流行病学和个体随访研究中经常出现左截断的数据,因为生存时间较短的受试者往往被排除在样本之外。而且,被招募对象的生存时间通常受到正确的审查。在本文中,研究了一般类的半参数转换模型,其中包括比例风险模型和比例赔率模型作为特殊情况,用于分析左截断和右删截的数据。我们提出了一种条件似然方法,并为这些模型的回归参数和累积危害函数开发了条件最大似然估计器(cMLE)。推导的回归参数和无穷维函数得分公式提出了cMLE的迭代算法。显示出cMLE是一致的并且渐近正常。估计器的极限方差可以使用负Hessian矩阵的逆来一致地估计。进行了密集的仿真研究以研究cMLE的性能。给出了对Channing House数据的应用以说明该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号