...
首页> 外文期刊>Laser & photonics reviews >Efficient Resonance Management in Ultrahigh-Q 1D Photonic Crystal Nanocavities Fabricated on 300 mm SOI CMOS Platform
【24h】

Efficient Resonance Management in Ultrahigh-Q 1D Photonic Crystal Nanocavities Fabricated on 300 mm SOI CMOS Platform

机译:超高Q 1D光子晶体纳米岩型在300 mm SOI CMOS平台上的高效共振管理

获取原文
获取原文并翻译 | 示例
           

摘要

Photonic crystal (PhC) nanocavities have demonstrated unique capabilities interms of light confinement and manipulation. As such, they are becomingattractive for developing novel resonance-based photonic integrated circuits(PICs). Here two essential challenges arise however—how to realize ultrahighquality factor (Q) PhC cavities using standard fabrication processescompatible with large volume fabrication, and how to efficiently integratethem with existing building blocks. In this work, ultrahigh-Q one-dimensional(1D) PhC nanocavities fabricated on a 300 mm silicon-on-insulator wafer aredemonstrated by optical lithography, with a record Q factor of up to 0.84million. Moreover, efficient mode management in those cavities is shown bycoupling them with an access waveguide, realizing two critical components:notch filters and narrow-band reflectors. In particular, they allow bothsingle-wavelength and multi-wavelength operation, at the desired resonantwavelengths, over a broad wavelength range (>100 nm). Compared totraditional cavities, this offers a fantastic strategy for implementingresonances precisely in PIC designs with more freedom in terms ofwavelength selectivity and the control of mode number. Given theircompatibility with optical lithography and compact footprint, the realized 1DPhC nanocavities will be of profound significance for designing compact andnovel resonance-based photonic components on large scale.
机译:光子晶体(PHC)纳米宽度已经证明了独特的能力轻型监禁和操纵条款。因此,他们正在变成用于开发新的基于共振的光子集成电路的吸引力(图片)。这里有两个基本挑战 - 然而如何实现超高使用标准制造工艺的质量因子(Q)PHC腔兼容大量制造,以及如何有效整合他们使用现有的构建块。在这项工作中,超高Q一维(1D)在300mm硅镶嵌晶片上制造的PHC纳米盖是光学光刻证明,记录Q系数高达0.84百万。此外,这些腔中的有效模式管理是如图所示的将它们与访问波导耦合,实现两个关键组件:陷波滤波器和窄带反射器。特别是,它们允许两者单波长和多波长操作,处于所需的谐振波长,在宽波长范围(> 100nm)上。相比传统洞穴,这提供了一个梦幻般的实施策略精确共振,在Pic设计方面,以更自由波长选择性和模式编号的控制。鉴于他们与光学光刻和紧凑型脚印的兼容性,实现1DPHC纳米移动将对设计紧凑和设计的显着意义基于新的基于共振的光子元件大规模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号