首页> 外文期刊>Knowledge-Based Systems >A novel approach based on genetic algorithm to speed up the discovery of classification rules on GPUs
【24h】

A novel approach based on genetic algorithm to speed up the discovery of classification rules on GPUs

机译:一种基于遗传算法的新方法,加快GPU对分类规则的发现

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new approach to produce classification rules based on evolutionary computation with novel crossover and mutation operators customized for execution on graphics processing unit (GPU). Also, a novel method is presented to define the fitness function, i.e. the function which measures quantitatively the accuracy of the rule. The proposed fitness function is benefited from parallelism due to the parallel execution of data instances. To this end, two novel concepts; coverage matrix and reduction vectors are used and an altered form of the reduction vector is compared with previous works. Our CUDA program performs operations on coverage matrix and reduction vector in parallel. Also these data structures are used for evaluation of fitness function and calculation of genetic operators in parallel. We proposed a vector called average coverage to handle crossover and mutation properly. Our proposed method obtained a maximum accuracy of 99.74% for Hepatitis C Virus (HCV) dataset, 95.73% for Poker dataset, and 100% for COVID-19 dataset. Our speedup is higher than 20% for HCV and COVID-19, and 50% for Poker, compared to using single core processors. (C) 2021 Published by Elsevier B.V.
机译:本文提出了一种基于进化计算产生分类规则的新方法,其具有用于在图形处理单元(GPU)上执行的新型交叉和突变运算符。此外,提出了一种新的方法来定义适合函数,即定量测量规则的准确性的功能。由于数据实例的并行执行,所提出的健身功能受益于并行性。为此,两种新颖的概念;使用覆盖基质和还原载体,并将改变的还原载体与先前的作品进行比较。我们的CUDA计划并行执行覆盖矩阵和减少载体的操作。此外,这些数据结构用于评估健身功能和遗传算子的平行计算。我们提出了一种称为平均覆盖范围的向量,以适当处理交叉和突变。我们所提出的方法获得最高精度为99.74%的丙型肝炎病毒(HCV)数据集,扑克数据集95.73%,Covid-19数据集100%。与使用单芯处理器相比,我们的加速高于HCV和Covid-19的20%和50%的扑克。 (c)2021由elsevier b.v发布。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第14期|107419.1-107419.17|共17页
  • 作者单位

    Ferdowsi Univ Mashhad Dept Comp Engn Mashhad Razavi Khorasan Iran;

    Ferdowsi Univ Mashhad Dept Comp Engn Mashhad Razavi Khorasan Iran|Cracow Univ Technol Fac Comp Sci & Telecommunicat Dept Comp Sci Krakow Poland;

    Ferdowsi Univ Mashhad Dept Comp Engn Mashhad Razavi Khorasan Iran;

    Deakin Univ Inst Intelligent Syst Res & Innovat IISRI Waurn Ponds Vic 3216 Australia;

    Ferdowsi Univ Mashhad Dept Comp Engn Mashhad Razavi Khorasan Iran;

    Cracow Univ Technol Fac Comp Sci & Telecommunicat Dept Comp Sci Krakow Poland|Polish Acad Sci Inst Theoret & Appl Informat Gliwice Poland;

    AGH Univ Sci & Technol Fac Elect Engn Automat Comp Sci & Biomed Engn Krakow Poland;

    Univ Southern Queensland Sch Management & Enterprise Darling Hts Qld Australia;

    Deakin Univ Inst Intelligent Syst Res & Innovat IISRI Waurn Ponds Vic 3216 Australia;

    Deakin Univ Inst Intelligent Syst Res & Innovat IISRI Waurn Ponds Vic 3216 Australia|Harvard Univ Harvard Paulson Sch Engn & Appl Sci Allston MA 02134 USA;

    Ngee Ann Polytech Dept ECE 535 Clementi Rd Singapore 599489 Singapore|SUSS Univ Sch Sci & Technol Dept Biomed Engn Singapore Singapore|Asia Univ Dept Biomed Informat & Med Engn Taichung Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Data mining; Machine learning; Rule discovery; Genetic algorithm; GPU programming; Classification rules;

    机译:数据挖掘;机器学习;规则发现;遗传算法;GPU编程;分类规则;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号