首页> 外文期刊>Knowledge-Based Systems >A fast learning algorithm for One-Class Slab Support Vector Machines
【24h】

A fast learning algorithm for One-Class Slab Support Vector Machines

机译:一种快速学习算法,用于单级板坯支持向量机

获取原文
获取原文并翻译 | 示例

摘要

One-Class Slab Support Vector Machines (OCSSVM) have turned out to be better in terms of accuracy in certain types of classification problems than the traditional SVMs, One Class SVMs, and other one-class classifiers. This paper proposes a fast training method for the OCSSVM using a modified Sequential Minimal Optimization (SMO) algorithm, which would enhance its scalability without a significant compromise in precision. We compared our SMO-based algorithm, the regular OCSSVM, and other state-of-the-art one-class classifiers for time and accuracy on multiple benchmark datasets. The experimental results indicate that the proposed training method provides the best tradeoff between training time and accuracy among the compared methods. It achieves accuracies similar to the regular OCSSVM and better or comparable to existing state-of-the-art one-class classifiers. It provides better scalability than the regular OCSSVM and most other classifiers. (C) 2021 Elsevier B.V. All rights reserved.
机译:一流的板坯支持向量机(OCSSVM)已经在某些类型的分类问题中的准确性方面更好,而不是传统的SVM,一个类SVM和其他单级分类器。 本文提出了一种使用修改的顺序最小优化(SMO)算法的OCSSVM的快速训练方法,这将提高其可伸缩性,而无需精确妥协。 我们比较了基于SMO的算法,常规OCSSVM和其他最先进的单级分类器,用于多个基准数据集的时间和准确性。 实验结果表明,该培训方法在比较方法之间提供了培训时间和准确性之间的最佳权衡。 它实现了与常规OCSSVM类似的准确性,更好地或与现有的最先进的单级分类器相当。 它提供比常规OCSSVM和大多数其他分类器更好的可伸缩性。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号