首页> 外文期刊>Knowledge-Based Systems >A region-based hypergraph network for joint entity-relation extraction
【24h】

A region-based hypergraph network for joint entity-relation extraction

机译:基于区域的联合实体关系提取的超图网络

获取原文
获取原文并翻译 | 示例

摘要

In joint entity and relation extraction, the input document is divided into multiple potential entity regions and context regions, where the characteristics of entities and their relations can often be reflected in the context. Therefore, an effective joint modeling method designed toward the features of different regions can lead to superior performance of joint entity and relation extraction. Previous works tend to implement in-depth modeling only for potential entity regions, ignoring the importance of contextual information for joint entity and relation extraction. In this paper, we propose a Region-based Hypergraph Network (RHGN) for joint entity and relation extraction. The RHGN introduces the concept of regional hypernodes for the first time, and proposes a cooperative method of GCN and BiLSTM to generate hypernodes for each region. Then, a region-based relation hypergraph is constructed for fairly and efficiently aggregate the features of all regions in the sentence. In order to initialize and update the features of the edges and hypernodes in the hypergraph, a Sequence-Enhanced Graph (SEG) unit is designed. Finally, we perform comparison experiments with existing competitive models on three public datasets: the CoNLL04, SciERC and ADE datasets. Experimental results demonstrate that our model achieves a significant improvement over the previous models on both entity recognition and relation extraction, and it also shows superior performance for dataset with nested entities. Extensive additional experiments further confirm the effectiveness of our approach. (C) 2021 Elsevier B.V. All rights reserved.
机译:在联合实体和关系提取中,输入文件被分成多个潜在实体区域和上下文区域,其中实体的特征及其关系通常可以在上下文中反映。因此,朝向不同地区特征设计的有效联合建模方法可以导致联合实体和关系提取的优异性能。以前的作品倾向于仅对潜在实体区域进行深入的建模,忽略了联合实体和关系提取的上下文信息的重要性。在本文中,我们提出了一个基于区域的超图网络(RHGN),用于联合实体和关系提取。 RHGN首次介绍了区域超节点的概念,并提出了GCN和BILSTM的协同方法,以为每个区域生成超节点。然后,基于区域的关系超图被公平地和有效地汇总了句子中所有区域的特征。为了初始化和更新超图中边缘和超节点的特征,设计了序列增强型图(SEG)单元。最后,我们在三个公共数据集中使用现有的竞争模型进行比较实验:Conll04,Scierc和Ade数据集。实验结果表明,我们的模型对实体识别和关系提取的先前模型实现了显着的改进,并且还对具有嵌套实体的数据集进行了卓越的性能。广泛的额外实验进一步证实了我们方法的有效性。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第27期|107298.1-107298.9|共9页
  • 作者单位

    Natl Univ Def Technol Sci & Technol Parallel & Distributed Proc Lab Changsha 410073 Hunan Peoples R China;

    Natl Univ Def Technol Coll Syst Engn Changsha 410073 Hunan Peoples R China;

    Natl Univ Def Technol Lab Software Engn Complex Syst Changsha 410073 Hunan Peoples R China;

    Natl Univ Def Technol Sci & Technol Parallel & Distributed Proc Lab Changsha 410073 Hunan Peoples R China|Natl Univ Def Technol Lab Software Engn Complex Syst Changsha 410073 Hunan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Information extraction; Named entity recognition; Relation extraction; Graph network; Deep learning;

    机译:信息提取;命名实体识别;关系提取;图形网络;深入学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号