首页> 外文期刊>Knowledge-Based Systems >Semi-supervised two-phase familial analysis of Android malware with normalized graph embedding
【24h】

Semi-supervised two-phase familial analysis of Android malware with normalized graph embedding

机译:具有规范化图形嵌入的Android Malware的半监督两相家族分析

获取原文
获取原文并翻译 | 示例

摘要

With the widespread use of smartphones, Android malware has posed serious threats to its security. Given the explosive growth of Android malware variants, detecting malware families are crucial for identifying new security threats, triaging, and building reference datasets. Building behavior profiles of Android applications (apps) with holistic graph-based features would help to retain program semantics and resist obfuscation. It is more effective to use representation with the low-dimensional feature, which could reduce calculation cost and improve the efficiency of downstream analytics tasks. To achieve this goal, we design and develop a practical system for the familial analysis of Android malware named GSFDroid. We first use graph-based features that contain structural information to analyze app behavior. Then, we employ Graph Convolutional Networks (GCNs) to embed nodes into a continuous and low-dimensional space, which improves the efficiency of downstream analytics tasks. Note that distributions of the learned feature vectors of APKs are not aligned and centered caused by the random initialization and propagation strategy of GCN, whose different scales can harm the performance of downstream tasks. Inspired by the z -score, we propose a simple graph feature normalization to standardize the embedded APK features. Finally, instead of fully supervised or unsupervised learning, we propose a two-phased familial analysis method fusing a semi-supervised classifier with a cluster operation on high uncertain score samples respect to the classifier. Promising experimental results based on real-world datasets demonstrate that our approach significantly outperforms state-of-the-art approaches, and can effectively cluster new malware samples from unknown families. (C) 2021 Elsevier B.V. All rights reserved.
机译:随着智能手机的广泛使用,Android恶意软件对其安全构成了严重的威胁。鉴于Android恶意软件变体的爆炸性增长,检测恶意软件系列对于识别新的安全威胁,三环和构建参考数据集是至关重要的。构建基于格图的功能的Android应用程序(应用程序)的行为配置文件将有助于保留程序语义和抵抗混淆。使用低维特征使用表示更有效,这可以降低计算成本并提高下游分析任务的效率。为实现这一目标,我们设计并开发了一个名为GSFdroid的Android恶意软件的家族分析的实用系统。我们首先使用基于图形的功能,该功能包含结构信息来分析应用程序行为。然后,我们采用图形卷积网络(GCNS)将节点嵌入到连续和低维空间中,从而提高了下游分析任务的效率。注意,APK的学习特征向量的分布未对齐和居中由GCN的随机初始化和传播策略引起,其不同的尺度可能会损害下游任务的性能。灵感来自z -score,我们提出了一个简单的图表功能归一化,以标准化嵌入式APK功能。最后,而不是完全监督或无监督的学习,我们提出了一种双相家族分析方法,融合半监督分类器,在高不确定的分数样本方面对分类器进行群集操作。基于现实世界数据集的实验结果表明,我们的方法显着优于最先进的方法,并可以有效地集中来自未知家庭的新恶意软件样本。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号