首页> 外文期刊>Knowledge-Based Systems >Leveraging malicious behavior traces from volatile memory using machine learning methods for trusted unknown malware detection in Linux cloud environments
【24h】

Leveraging malicious behavior traces from volatile memory using machine learning methods for trusted unknown malware detection in Linux cloud environments

机译:利用Linux云环境中的机器学习方法利用Volatile Memory的恶意行为迹线

获取原文
获取原文并翻译 | 示例

摘要

Most organizations today use cloud-computing environments and virtualization technology. Linux-based clouds are the most popular cloud environments among organizations, and thus have become the target of cyber-attacks launched by sophisticated malware. Existing malware detection solutions for Linux-based VMs are installed and operated on the VM itself and are considered untrusted since malware can detect, interfere with, and even evade them. Thus, Linux cloud-based environments remain exposed to various malware-based attacks. This paper presents the first trusted framework for detecting unknown malware in Linux VM cloud-environments. Our framework acquires volatile memory dumps from the inspected VM by querying the hypervisor in a trusted manner and overcoming malware's ability to detect the security mechanism and evade detection. Then, using machine-learning algorithms we leverage informative traces (our 171 proposed features) from different parts of the VM's volatile memory. The framework was evaluated in seven rigorous experiments, on a total of 21,800 volatile memory dumps taken from two widely used virtual servers (10,900 from each server) during the execution of a diverse yet representative collection of benign and malicious Linux applications. Notably, the results show that our proposed framework can accurately (with high TPRs and low FPRs): (a) detect unknown malware (b) detect new unknown malware from unseen malware categories, which is a critical ability for coping with new malware trends and phenomena; (c) categorize an unknown malware by its attack category; (d) detect unknown malware on an unknown virtual-server; and lastly (e) detect fileless malware, a critical capability demonstrating the ability to detect substantially different attack modus operandi. (C) 2021 Elsevier B.V. All rights reserved.
机译:今天大多数组织使用云计算环境和虚拟化技术。基于Linux的云是组织中最受欢迎的云环境,因此已成为由复杂恶意软件推出的网络攻击的目标。基于Linux的VM的现有恶意软件检测解决方案并在VM本身上安装和操作,并且由于恶意软件可以检测,干扰,甚至避免它们,因此被认为是不受信任的。因此,基于Linux基于云的环境仍然暴露于各种基于恶意软件的攻击。本文介绍了一个可信赖的框架,用于检测Linux VM云环境中的未知恶意软件。我们的框架通过以可信方式查询虚拟机管理程序并克服恶意软件来检测安全机制和逃避检测的能力来获取VORINE VM的易失性存储器转储。然后,使用机器学习算法,我们利用VM VM挥发内存的不同部分的信息迹线(我们的171个提议功能)。该框架在七个严格的实验中进行了评估,总共有21,800个挥发性存储器转储,从两个广泛使用的虚拟服务器(来自每个服务器10,900)的良好的虚拟服务器(10,900)的执行期间,在执行各种尚未代表的良性和恶意Linux应用程序的集合期间。值得注意的是,结果表明,我们提出的框架可以准确地(具有高TPRS和低FPRS):(a)检测未知的恶意软件(b)从看不见的恶意软件类别检测新的未知恶意软件,这是应对新恶意软件趋势的关键能力和现象; (c)通过其攻击类别分类未知恶意软件; (d)在未知的虚拟服务器上检测未知恶意软件;最后(e)检测到无用的恶意软件,致力于检测实际不同攻击的能力的关键能力。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号