首页> 外文期刊>Knowledge-Based Systems >Pair-wise ranking based preference learning for points-of-interest recommendation
【24h】

Pair-wise ranking based preference learning for points-of-interest recommendation

机译:基于对兴趣点建议的基于排名的偏好学习

获取原文
获取原文并翻译 | 示例

摘要

Recommending point-of-interest (POI) to users accurately is a hot topic in business. In the past, many researchers proposed recommendation models based on collaborative filtering or matrix factorization from the perspectives of time, geography, and social relationship. However, only a few studies have focused on user preference which is the key factor influencing user decision. This work focuses on studying the representation and mining of user preference from check-in data for POI recommendation. Pair-wise ranking is the common solution for implementing preference learning. However, traditional ways of constructing pair-wise data cut off the connections between multiple options in the decision process, affecting the effectiveness of preference learning. In this work, we change the ratio of negative to positive instance in pair-wise data from 1:1 to k:1 to ensure the data construction in line with the real decision making process. We propose a new negative sampling method taking the geographical distance and POI categorical distance into consideration jointly for enhancing the quality of training data. For our specialized pair-wise data, we propose a new optimization criterion for implementing effective preference learning. Finally, we conduct extensive experiments on two real-world datasets to validate the effectiveness of our proposed approach. The experiment results show that our approach outperforms the state-of-the-art models by at least 19.7% on F1-Score and 24.4% on nDCG. Additionally, our approach can be easily generalized to other domains, such as commodities, news, and movie recommendation. (C) 2021 Elsevier B.V. All rights reserved.
机译:将兴趣点(POI)推荐给用户准确是一个热门主题。在过去,许多研究人员提出了基于从时间,地理和社会关系的角度来看的协同过滤或矩阵分解的推荐模型。然而,只有少数研究专注于用户偏好,这是影响用户决策的关键因素。这项工作侧重于研究用户偏好的代表和挖掘,从收取POI推荐的登记数据。配对排名是实现偏好学习的常见解决方案。然而,在决策过程中构建配对数据的传统方式切断了多种选项之间的连接,影响了偏好学习的有效性。在这项工作中,我们将负数与阳性数据的比率从1:1到k更改为副数据,以确保数据构造与真正的决策过程一致。我们提出了一种新的负面采样方法,以考虑到地理距离和POI分类距离,以提高培训数据的质量。对于我们的专业成对数据,我们提出了实现有效偏好学习的新优化标准。最后,我们对两个现实世界数据集进行了广泛的实验,以验证我们提出的方法的有效性。实验结果表明,我们的方法在F1分数上以至少19.7%的方式表现出最先进的模型和在NDCG上的24.4%。此外,我们的方法可以很容易地推广到其他域,例如商品,新闻和电影推荐。 (c)2021 elestvier b.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第5期|107069.1-107069.12|共12页
  • 作者单位

    Shanghai Univ SILC Business Sch Shanghai 201899 Peoples R China;

    Shanghai Univ SILC Business Sch Shanghai 201899 Peoples R China;

    Oakland Univ Sch Business Adm Dept Decis & Informat Sci Rochester MI 48309 USA|Oakland Univ Ctr Data Sci & Big Data Analyt Rochester MI 48309 USA;

    Shandong Univ Finance & Econ Sch Management Sci & Engn Jinan 250014 Shandong Peoples R China;

    ShangHai Univ Finance & Econ Sch Informat Management & Engn Shanghai 200433 Peoples R China|Shanghai Key Lab Financial Informat Technol Shanghai 200433 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Negative sampling; Neural network; POI recommendation; Pair-wise learning; Semantic representation;

    机译:负面抽样;神经网络;POI推荐;对学习;语义表示;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号