首页> 外文期刊>Knowledge-Based Systems >A differentially private location generalization approach to guarantee non-uniform privacy in moving objects databases
【24h】

A differentially private location generalization approach to guarantee non-uniform privacy in moving objects databases

机译:差异私有的位置泛化方法,以保证移动对象数据库中的非统一隐私

获取原文
获取原文并翻译 | 示例

摘要

Recently there has been much interest in moving objects databases because of their applications in many domains, such as location-based services and traffic management. Moving objects databases store and manage information representing changes in the spatial properties of moving objects over time. Meanwhile, privacy protection has been one of the most important concerns in these databases. In this paper, we study this problem by presenting DPLG, a location generalization approach for moving objects databases that preserves the strong guarantee of differential privacy. Our main goal is to guarantee non-uniform privacy for locations with different privacy protection requirements while being scalable for spatial domains with a large number of locations. For this purpose, we use location generalization in such a way that locations with higher privacy protection requirements are generalized to larger ones. Location generalization also has the advantage that it enables DPLG to reduce the number of locations and, thus, to keep the running time and space requirements as reasonable as possible. We also present two post-processing techniques, namely, consistency constraints enforcement and quality improvement, to have consistent query answers and to reduce query errors caused by location generalization. The quality improvement technique divides the noisy count of each generalized location among the reference locations it contains homogeneously or heterogeneously. Extensive experiments demonstrate that, in addition to keeping reasonable the running time and space requirements, DPLG improves the utility of query answers for locations with lower privacy protection requirements in comparison to those with higher privacy protection requirements while satisfying differential privacy. (C) 2021 Elsevier B.V. All rights reserved.
机译:最近,由于许多域中的应用程序,例如基于位置的服务和流量管理,因此对移动对象数据库有很多兴趣。移动对象数据库存储和管理表示移动对象的空间属性的变化随时间的信息。同时,隐私保护是这些数据库中最重要的问题之一。在本文中,我们通过呈现DPLG来研究这个问题,一种用于移动物体数据库的位置泛化方法,这些方法保留了差异隐私的强烈保证。我们的主要目标是保证具有不同隐私保护要求的地点的非统一隐私,同时可用于具有大量位置的空间域。为此目的,我们使用位置泛化,使得具有更高隐私保护要求的位置是较大的。位置泛化还具有以下优点,即它使DPLG能够降低位置的数量,因此将运行时间和空间要求保持尽可能合理。我们还提出了两个后处理技术,即一致性约束强制执行和质量改进,具有一致的查询答案,并减少由位置泛化引起的查询错误。质量改进技术将其均匀或异构地含有的参考位置之间的每个广义位置的噪声计数。广泛的实验表明,除了保持运行时间和空间要求之外,DPLG还可以提高具有较低隐私保护要求的隐私保护要求的查询答案的效用,同时满足差异隐私。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号