首页> 外文期刊>Knowledge-Based Systems >ST-LBAGAN: Spatio-temporal learnable bidirectional attention generative adversarial networks for missing traffic data imputation
【24h】

ST-LBAGAN: Spatio-temporal learnable bidirectional attention generative adversarial networks for missing traffic data imputation

机译:ST-LBAGAN:时空学习的双向关注生成对冲网络,用于缺少交通数据估算

获取原文
获取原文并翻译 | 示例

摘要

Real-time, accurate and comprehensive traffic flow data is the key of intelligent transportation systems to provide efficient services for urban transportation. In the process of collecting data, there are many factors causing data loss, which needs to be supplemented and repaired to reduce the instability, and improve the precision of system application in the intelligent transportation system. This paper proposes a Spatio-Temporal Learnable Bidirectional Attention Generative Adversarial Networks (ST-LBAGAN) for missing traffic data imputation. First, we take external factors, historical observations, incomplete data, and masked image as the input of generator, and obtain the missing data imputation by using binary classification as the output of the discriminator. Secondly, the encoder and decoder of generator are constructed on the basis of the U-Net. The forward attention map and the reverse attention map of learnable bidirectional attention correspond to the encoder and the decoder respectively to effectively obtain the spatial-temporal random characteristics of traffic flow. Thirdly, high-level and low-level features, in the encoder and decoder, are combined by multiple skip connections. Furthermore, a new objective function is optimized by combining masked reconstruction loss, perceptual loss, discriminative loss and adversarial loss to improve the data imputation ability. Finally, our model is well-adapted on the Beijing taxi GPS dataset. The experimental results show that an improved state-of-the-art performance is achieved on various standard benchmarks. (C) 2020 Elsevier B.V. All rights reserved.
机译:实时,准确和全面的交通流量数据是智能交通系统的关键,为城市交通提供高效的服务。在收集数据的过程中,有许多导致数据丢失的因素,需要补充和修复,以降低不稳定,提高智能运输系统中系统应用的精度。本文提出了一种时空学习的双向关注生成的对抗网络(ST-LBAGAN),用于缺少交通数据归档。首先,我们将外部因素,历史观察,不完整的数据和屏蔽图像作为发电机的输入,并通过使用二进制分类作为鉴别器的输出来获得缺失的数据归档。其次,发电机的编码器和解码器在U-NET的基础上构建。前瞻性注意地图和学习双向注意的反向注意图分别对应于编码器和解码器,以有效地获得交通流量的空间随机特性。第三,编码器和解码器中的高级和低级功能由多个跳过连接组合。此外,通过组合掩蔽的重建损失,感知损失,辨别性损失和对抗性损失来优化新的目标函数,以提高数据归咎能力。最后,我们的模型在北京出租车GPS数据集上很好地适应。实验结果表明,在各种标准基准上实现了改进的最先进的性能。 (c)2020 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号