首页> 外文期刊>Knowledge-Based Systems >Structured discriminant analysis dictionary learning for pattern classification
【24h】

Structured discriminant analysis dictionary learning for pattern classification

机译:模式分类的结构判别分析字典学习

获取原文
获取原文并翻译 | 示例

摘要

Dictionary learning has been widely used in the field of pattern recognition. Although the existing synthesis dictionary learning methods have achieved impressive results, they need compute sparse codes using a time-consuming sparse coding procedure. As a dual viewpoint of synthesis dictionary learning, analysis dictionary learning (ADL) has attracted much attention due to its high efficiency and intuitive meaning in recent years. However, how to associate analysis dictionary atoms with class labels and learn a structured discriminant analysis dictionary, is still a challenging problem. In this paper, we propose a structured discriminant analysis dictionary learning (SDADL) method to learn a structured discriminant analysis dictionary that consists of the class-specific analysis sub-dictionaries associated with the corresponding classes. Specifically, we introduce a classification error term into SDADL model to learn an optimal linear classifier for classification. To obtain the discriminant analysis sparse codes, we introduce a discriminant analysis sparse code error term into SDADL model, which forces the samples from the same class to have similar analysis sparse codes. Moreover, we also introduce a structured discriminant term into SDADL model to improve the discrimination capability of both each class-specific analysis sub-dictionary and analysis sparse codes. An efficient iterative algorithm is also developed to solve the optimization problem of SDADL. In addition, we design a novel scheme for classification. Extensive experiments on five image datasets verify the effectiveness of SDADL for pattern classification. (C) 2021 Elsevier B.V. All rights reserved.
机译:字典学习已广泛用于模式识别领域。虽然现有的综合字典学习方法已经实现了令人印象深刻的结果,但它们需要使用耗时的稀疏编码过程计算稀疏代码。作为合成词典学习的双重观点,分析文字典学习(ADL)由于其近年来的高效率和直观意义,因此引起了很多关注。但是,如何将分析词典原子与类标签联系起来并学习结构化判别分析词典,仍然是一个具有挑战性的问题。在本文中,我们提出了一种结构化判别分析字典学习(SDADL)方法来学习结构化判别分析词典,该分析词典包括与相应类相关联的特定类分析子词典。具体地,我们将分类错误术语介绍到SDADL模型中,以学习用于分类的最佳线性分类器。为了获得判别分析稀疏代码,我们将判别分析稀疏代码误差术语引入SDADL模型,这迫使采样从同一类中具有类似的分析稀疏代码。此外,我们还将结构化判别术语引入到SDADL模型中,以提高每个类特定分析子字典和分析稀疏代码的判别能力。还开发了一种有效的迭代算法来解决SDADL的优化问题。此外,我们设计了一种用于分类的新颖方案。五个图像数据集的广泛实验验证了SDADL用于模式分类的有效性。 (c)2021 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2021年第15期|106794.1-106794.10|共10页
  • 作者单位

    Henan Univ Sch Artificial Intelligence Kaifeng 475004 Peoples R China|Henan Univ Henan Key Lab Big Data Anal & Proc Kaifeng 475004 Peoples R China;

    Henan Univ Sch Artificial Intelligence Kaifeng 475004 Peoples R China;

    Henan Univ Sch Artificial Intelligence Kaifeng 475004 Peoples R China;

    Henan Univ Sch Comp & Informat Engn Kaifeng 475004 Peoples R China|Henan Univ Henan Key Lab Big Data Anal & Proc Kaifeng 475004 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Analysis dictionary; Dictionary learning; Analysis sparse coding; Pattern classification;

    机译:分析词典;字典学习;分析稀疏编码;模式分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号