首页> 外文期刊>Knowledge-Based Systems >High-accuracy health prediction of sensor systems using improved relevant vector-machine ensemble regression
【24h】

High-accuracy health prediction of sensor systems using improved relevant vector-machine ensemble regression

机译:使用改进的相关矢量机组合奏回归传感器系统的高精度健康预测

获取原文
获取原文并翻译 | 示例

摘要

Sensor systems have been used widely in many fields. However, sensors are prone to faults, which greatly reduce the performance of the trained pattern-recognition model. To improve the reliability and stability of the sensor system, it is essential to apply prognostics and health management to the sensor system. A novel health-prediction model of the sensor system is established based on the unascertained deep soft sensor (UDSS) and relevant vector-machine ensemble (RVME). The first step in health prediction is to extract the performance variables. Based on unascertained mathematics and the deep belief network, a novel UDSS is proposed to extract the performance variables, which are called the health reliability degree (HRD). The HRD is applied as the input of health prediction. The second step is to establish an appropriate predictor. Bagging is used as the framework, the relevant vector machine is used as the weak learner, and RVME is utilized to structure continuous single-step or multiple-step health predictions. To verify the effectiveness, the proposed method is applied to a gas-sensor system. An experimental gas-monitoring system is designed and developed to obtain sufficient experimental data. The simulation result demonstrates that compared to other methods, the proposed method has a lower average relative error of 0.60%. (C) 2020 Elsevier B.V. All rights reserved.Y
机译:传感器系统已广泛使用在许多领域。然而,传感器容易出现故障,这大大降低了培训的模式识别模型的性能。为了提高传感器系统的可靠性和稳定性,必须对传感器系统应用预后和健康管理。基于未味道的深软传感器(UDSS)和相关的矢量机组(RVME)建立了传感器系统的新型健康预测模型。健康预测的第一步是提取性能变量。基于不肥化的数学和深度信仰网络,提出了一种新的UDS,以提取性能变量,称为健康可靠性(HRD)。 HRD被应用为健康预测的输入。第二步是建立适当的预测因子。袋装用作框架,相关的向量机用作弱学习者,RVME用于结构连续的单步或多步骤健康预测。为了验证有效性,所提出的方法应用于气体传感器系统。设计并开发了实验气体监测系统以获得足够的实验数据。仿真结果表明,与其他方法相比,所提出的方法的平均相对误差为0.60%。 (c)2020 Elsevier B.v.保留所有权利.Y

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号