首页> 外文期刊>Knowledge-Based Systems >Lightweight multi-scale residual networks with attention for image super-resolution
【24h】

Lightweight multi-scale residual networks with attention for image super-resolution

机译:轻量级多尺度残余网络,注意图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

In recent years, constructing various deep convolutional neural networks (CNNs) for single-image super-resolution (SISR) tasks has made significant progress. Despite their high performance, numerous CNNs are limited in practical applications, owing to the requirement of heavy computation. This paper proposes a lightweight network for SISR, known as attention-based multi-scale residual network (AMSRN). In detail, a residual atrous spatial pyramid pooling (ASPP) block as well as a spatial and channel-wise attention residual (SCAR) block is stacked alternately to support the main framework of the entire network. The residual ASPP block utilizes parallel dilated convolutions of different dilation rates to achieve the purpose of capturing multi-scale features. The SCAR block adds the channel attention (CA) and spatial attention (SA) mechanisms based on a double-layer convolution residual block. In addition, group convolution is introduced in the SCAR block to further reduce the parameters while preventing over-fitting. Moreover, a multi-scale feature attention module is designed to provide instructive multi-scale attention information for shallow features. Particularly, we propose a novel upscale module, which adopts dual paths to upscale the features by jointly using sub-pixel convolution and nearest interpolation layers, instead of using deconvolution layer or sub-pixel convolution layer alone. The experimental results demonstrate that our method achieves comparable performance to the state-of-the-art methods, both quantitatively and qualitatively. (C) 2020 Elsevier B.V. All rights reserved.
机译:近年来,为单图像超分辨率(SISR)任务构建各种深度卷积神经网络(CNNS)取得了重大进展。尽管其性能高,但由于重量计算的要求,许多CNN在实际应用中受到限制。本文为SISR提出了一种轻量级网络,称为基于关注的多尺度残差网络(AMSRN)。详细地,剩余的残留的空间金字塔汇集(ASPP)块以及空间和通道 - 明智的注意力(疤痕)块交替地堆叠,以支持整个网络的主框架。残留的ASPP块利用不同扩张速率的并行扩张卷曲,以达到捕获多尺度特征的目的。 SCAR块基于双层卷积残余块增加通道注意(CA)和空间注意(SA)机制。此外,在瘢痕块中引入了组卷积,以进一步减少参数,同时防止过度拟合。此外,多尺度特征注意力模块旨在为浅薄特征提供指导的多尺度关注信息。特别地,我们提出了一种新颖的高档模块,该模块采用双路径来通过使用子像素卷积和最近的插值层来共同地提高特征,而不是单独使用去卷积层或子像素卷积层。实验结果表明,我们的方法可以定量和定性地实现了最先进的方法的可比性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号