首页> 外文期刊>Knowledge-Based Systems >A structure optimization method for extended belief-rule-based classification system
【24h】

A structure optimization method for extended belief-rule-based classification system

机译:基于信念规则的分类系统的结构优化方法

获取原文
获取原文并翻译 | 示例

摘要

The widely applied belief-rule-based(BRB) system has demonstrated its advantages in handling both qualitative and quantitative information. As an extension of BRB system, the extended beliefrule-based(EBRB) system bridges the rule-based methods and data-driven methods by efficiently transforming data into extended belief rules(EBRs). Many works have been done to apply EBRB system in addressing classification problems. However, the problems of making use of all attributes indiscri-minately and activating almost all EBRs still affect the accuracy and computational efficiency of EBRB system. In this paper, a structure optimization method for EBRB(SO-EBRB) system, including attribute optimization and rule activation, is proposed to address aforementioned problems. In the attribute optimization, a weighted minimum redundancy maximum relevance(MRMR) method is proposed, where the relevance between attributes and label as well as the redundancy among attributes are used to evaluate attributes. Afterwards, the proposed attribute weight calculation method is utilized to assign attribute weights for the EBRB system. In rule activation, an improved minimum centre distance rule activation(MCDRA) method, which considering the weights of attributes in distance calculation, is used to activate customized EBRs for input query data. 15 benchmark classification data sets are utilized to verify the effectiveness of the proposed SO-EBRB method. The results show that, compared with conventional EBRB system, the SO-EBRB system achieves higher classification accuracy, lower rule activation ratio and less response time. Additionally, comparison between the proposed method and some state-of-art machine learning algorithms demonstrates that the SO-EBRB system achieves prominent performance in addressing classification problems. (C) 2020 Elsevier B.V. All rights reserved.
机译:广泛应用的信仰规则(BRB)系统已经证明了其处理定性和定量信息的优势。作为BRB系统的扩展,扩展的基于Beliefrule的(EBRB)系统通过将数据有效地转换为扩展信念规则(EBRS)来桥接基于规则的方法和数据驱动方法。已经完成了许多作品来应用EBRB系统解决分类问题。然而,利用所有属性的问题互联网和激活几乎所有EBR仍然影响EBRB系统的准确性和计算效率。本文提出了一种用于eBRB(SO-EBRB)系统的结构优化方法,包括属性优化和规则激活,以解决上述问题。在属性优化中,提出了一种加权最小冗余最大相关性(MRMR)方法,其中属性和标签之间的相关性以及属性之间的冗余用于评估属性。之后,利用所提出的属性权重计算方法为EBRB系统分配属性权重。在规则激活中,考虑距离计算中属性权重的改进的最小中心距离规则激活(MCDRA)方法用于激活输入查询数据的自定义EBR。 15基准分类数据集用于验证所提出的SO-EBRB方法的有效性。结果表明,与传统的EBRB系统相比,SO-EBRB系统实现了更高的分类精度,降低规则激活率和较少的响应时间。另外,所提出的方法与某些最先进的机器学习算法之间的比较表明,SO-EBRB系统在寻址分类问题方面取得了突出的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号