首页> 外文期刊>Knowledge-Based Systems >Evolutionary game theoretical on-line event detection over tweet streams
【24h】

Evolutionary game theoretical on-line event detection over tweet streams

机译:推文流的进化游戏理论在线事件检测

获取原文
获取原文并翻译 | 示例

摘要

Current Online Social Networks represent a means for the continuous generation and distribution of information, which is slightly changed when moving from a user to another during the traversing of the network. Such an amount of information can overcome the capacity of a single user to manage it, so it would be useful to reduce it so that the user is able to have a summary of the information flowing the network. To this aim, it is of crucial importance to detect events within such an information stream, composing of the most representative words containing in each information instance, representing the event described by the set of tweet categorized together. There is a vast literature on off-line event detection on data-sets acquired from online social networks, but a similar solid set of approaches is missing if the detection has to be done on-line, which is demanding by the current applications. The driving idea described in this paper is to realize on-line clustering of tweets by leveraging on evolutionary game theory and the replicator dynamics, which have been used with success in many classification problems and/or multiobjective optimizations. We have adapted and enhanced a evolutionary clustering from the literature to meet the needs of on-line tweet clustering. Such a solution has been implemented according to the Kappa architectural model and assessed against state-of-the art approaches showing higher values of topic and keyword recall on two realistic data-sets. (C) 2020 Elsevier B.V. All rights reserved.
机译:当前的在线社交网络代表了持续生成和分发信息的手段,当在遍历网络期间从用户移动到另一个时略有改变。这样的信息可以克服单个用户来管理它的容量,因此减少它是有用的,使得用户能够具有流动网络的信息的摘要。为此目的,在这种信息流中检测事件,构成包含在每个信息实例中的最具代表性的单词的事件至关重要,表示由分类的一组推文描述的事件。关于从在线社交网络获取的数据集的离线事件检测有一个巨大的文献,但如果在线在线完成检测,则缺少类似的一系列方法,这是当前应用要求的。本文描述的驾驶思想是通过利用进化博弈论和复制器动力学来实现推文的在线聚类,并且复制器动态在许多分类问题和/或多目标优化中已经使用。我们改进并增强了文献中的进化聚类,以满足在线推文聚类的需求。这种解决方案已经根据Kappa架构模型实施,并针对最先进的方法评估,显示出在两个现实数据集上的主题和关键字召回的更高值。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号