首页> 外文期刊>Knowledge-Based Systems >A three-way density peak clustering method based on evidence theory
【24h】

A three-way density peak clustering method based on evidence theory

机译:一种基于证据理论的三通密度峰聚类方法

获取原文
获取原文并翻译 | 示例

摘要

Density peaks clustering (DPC) algorithm is an efficient and simple clustering method attracting the attention of many researchers. However, its strategy of assigning each non-grouped object to the same cluster depends on its nearest neighbors having a higher local density. This may lead to the cluster label error propagation problem, i.e. if an object is wrong-labeled during the clustering process, its label will be propagated in the subsequent assignment. To overcome this defect, in this paper we propose a three-way density peak clustering method based on evidence theory, referred to as 3W-DPET. 3W-DPET forms clusters as interval sets using three-way clustering representation including three disjoint regions called positive region (POS), boundary region (BND) and negative region (NEG). 3W-DPET mainly consists of three steps: (1) finding out cluster centers and noises before clustering; (2) using a midrange distance comparison method to detect positive regions of clusters; and (3) allocating the remaining non-grouped objects, including noises, to the boundary region or the negative region of clusters. The distinguishing feature of 3W-DPET is that evidence theory is used to construct and collect the information of K-nearest neighbors in order to assign non-grouped objects to the most suitable cluster, which can effectively solve the problem of cluster label error propagation. In order to validate 3W-DPET, we test it on 18 datasets using three benchmarks (ACC, ARI and NMI), and compare it to K-means, FCM, DPC, KNN-DPC, DPCSA, SNN-DPC and CE3-kmeans methods. Experimental results suggest that 3W-DPET can effectively find clusters and its results conform with human cognition (C) 2020 Elsevier B.V. All rights reserved.
机译:密度峰集聚类(DPC)算法是一种有效而简单的聚类方法,吸引了许多研究人员的注意。但是,其将每个未分组对象分配给同一群集的策略取决于其具有较高局部密度的最近邻居。这可能导致群集标签错误传播问题,即,如果在群集过程中标记为错误标记,则其标签将在后续分配中传播。为了克服这种缺陷,在本文中,我们提出了一种基于证据理论的三通密度峰聚类方法,称为3W-det。 3W-DPET使用三通集群表示作为间隔组形成群集,包括三个分离区域,称为正区域(POS),边界区域(BND)和负区域(NEG)。 3W-DPET主要由三个步骤组成:(1)在聚类前找出集群中心和噪声; (2)使用中端距离比较方法检测簇的正区域; (3)将剩余的未分组对象(包括噪声)分配给边界区域或群集的负区域。 3W-DPET的显着特征是,证据理论用于构造和收集K-CORMALY邻居的信息,以便将非分组对象分配给最合适的群集,这可以有效地解决群集标签错误传播的问题。为了验证3W-DPET,我们使用三个基准(ACC,ARI和NMI)在18个数据集上测试它,并将其与K-Means,FCM,DPC,KNN-DPC,DPCSA,SNN-DPC和CE3-Kmeans进行比较方法。实验结果表明,3W-DPET可以有效地发现群集及其结果符合人类认知(C)2020 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号