首页> 外文期刊>Knowledge-Based Systems >A named entity topic model for news popularity prediction
【24h】

A named entity topic model for news popularity prediction

机译:新闻普及预测的命名实体主题模型

获取原文
获取原文并翻译 | 示例

摘要

Predicting the popularity of web content is widely regarded as an important but challenging task. Online news articles are typical examples of this. In particular, owing to their time-sensitive nature, it is preferable to predict the popularity of news articles before their publication. To achieve this, this study proposes a named entity topic model (NETM) to extract the textual factors that can drive popularity growth. Here, each named entity is assumed to have a popularity-gain distribution over all semantic topics. The popularity of a news article is considered as the accumulation of popularity gains generated by its named entities (NEs) over all the topics. By learning the popularity-gain matrix for each named entity, the popularity of any news article can be predicted. Experiments on two collections of news articles demonstrate that the proposed NETM can outperform existing models in terms of accuracy. Additionally, the popularity-gain matrix learned by the NETM can be used to effectively explain the popularity of specific news articles. (C) 2020 Elsevier B.V. All rights reserved.
机译:预测Web内容的普及被广泛认为是一个重要但具有挑战性的任务。在线新闻文章是典型的例子。特别是,由于他们的时间敏感的性质,最好预测出版物前的新闻文章的普及。为实现这一目标,本研究提出了一个命名实体主题模型(Netm),以提取可以推动流行增长的文本因素。在这里,假设每个命名实体都有于所有语义主题的流行度增益分布。新闻文章的普及被认为是其命名实体(NES)产生的受欢迎程度的积累。通过学习每个命名实体的流行度增益矩阵,可以预测任何新闻文献的普及。两种新闻文章集合的实验表明,所提出的网球可以在准确性方面优于现有模型。此外,由网管学习的受欢迎程度增益矩阵可用于有效解释特定新闻文章的普及。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第15期|106430.1-106430.12|共12页
  • 作者单位

    Peking Univ Sch Elect Engn & Comp Sci Beijing Peoples R China;

    Renmin Univ China Sch Stat Beijing Peoples R China;

    Renmin Univ China Ctr Appl Stat Beijing Peoples R China|Renmin Univ China Sch Stat Beijing Peoples R China;

    Peking Univ Sch Elect Engn & Comp Sci Beijing Peoples R China;

    Renmin Univ China Ctr Appl Stat Beijing Peoples R China|Renmin Univ China Sch Stat Beijing Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Named entity; Web content; Popularity prediction; Topic model;

    机译:命名实体;网页内容;人气预测;主题模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号