首页> 外文期刊>Knowledge-Based Systems >An edge creation history retrieval based method to predict links in social networks
【24h】

An edge creation history retrieval based method to predict links in social networks

机译:基于边缘创建历史检索方法,以预测社交网络中的链接

获取原文
获取原文并翻译 | 示例

摘要

Link prediction is a graph mining task that aims to foretell whether pairs of non-linked nodes will connect in the future. It has many useful applications in social networks such as friend recommendation, identification of future collaborations between authors in co-authorship networks, discovery of hidden groups of terrorists and criminals, among others. In general, the state-of-the-art link prediction methods consider topological data extracted from the current state (i.e., the most recent and available snapshot) of a network. They do not take into account information that describes how the network's topology was at the moments when the existing edges were created. Hence, those methods take the chance to disregard information about the circumstances that may have influenced the appearance of old edges, and that could be useful to predict the creation of new ones. Thus, this study raises and evaluates the hypothesis that recovering such data may contribute to improving link prediction. This hypothesis is justified since those data enrich the description of the application's context with examples that represent exactly the kind of event to be foreseen: the creation of new connections. To this end, this paper proposes a new link prediction method that is based on edge creation history retrieval. Results from experiments with twenty scenarios of four real co-authorship social networks presented statistical evidence that indicates the effectiveness of the proposed method and confirms the raised hypothesis. (C) 2020 Elsevier B.V. All rights reserved.
机译:链接预测是一个图形挖掘任务,其旨在预测非链接节点对将来连接。它在社交网络中有许多有用的应用程序,如朋友推荐,在共同作者网络中的作者之间的未来合作中,发现隐藏的恐怖分子和罪犯中的未来合作。通常,最先进的链接预测方法考虑从网络的当前状态(即,最新和可用的快照)提取的拓扑数据。他们没有考虑到描述现有边缘创建网络拓扑的瞬间的信息。因此,这些方法有机会忽视有关可能影响旧边缘的情况的情况的信息,这可能有助于预测创造新的。因此,该研究提高并评估了恢复这些数据可能有助于改善链路预测的假设。这个假设是合理的,因为这些数据丰富了应用程序的描述,其中包含恰好要预见的事件的例子:创建新连接。为此,本文提出了一种基于边缘创建历史检索的新链路预测方法。来自四个真正共同作者的二十个情景的实验结果显示了统计证据,表明提出的方法的有效性并确认提出的假设。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号